eBPF-based APM and Observability for Cloud-native Infrastructure
Bhavye Sharma, sharm609@purdue.edu and Deepak Nadig, nadig@purdue.edu

Identifying application anomalies & performance bottlenecks has become difficult due to:

- Microservice architecture with different programming languages and tooling
- Ephemeral container-based workloads
- Large scale distributed applications in the cloud

Most organizations that build observability with a centralized monitoring and scraping approach

Observability tools collect 3 types of data i.e., Metrics, Traces and Logs
Traditional APM tools fail to provide sufficient visibility into cloud-native workloads.

Limitations of traditional APM tools

- Complexity of root cause analysis
- Vast amount of data
- Correlation issues across environments
- Speed of modern app development
- Vendor lock in with multiple tools
- Security risks during peak traffic

Our Proposed Methodology:

Build open-sourced unified pipeline for monitoring and collecting baseline performance data.
Simulate production workloads like Data Mining, Machine Learning, Web Servers and Databases.
Analyze the subset of critical hardware metrics, OS metrics, application logs, kernel traces for productive workloads.
Train one-class anomaly detector neural network to identify anomalies in our workloads.

Our Research Questions:

- Can we export high-accuracy observability data without instrumenting the application layer?
- Can we use ML and DL to classify application behavior based on observability data?

Our solution exports Linux host and container level metrics to a time-series database. The data is used to train our machine learning models.