Indiana Statewide Cybersecurity Summit 2023

Reintroducing Client Puzzles for DDoS Mitigation

Introducing DDoS:

The Volumetric Distributed Denial of Service Attacks (DDoS) is one of the most common problems in network security. Volumetric DDoS Attacks occur when a server is flooded with so much fake traffic that the server can not serve requests from legitimate clients.

DDoS attacks can cost a business anywhere from 120,000 – 2 million USD
Microsoft stopped the largest attack every recorded at 3.47 tbps
In 2022 Cloudflare mitigated an attack that came from 30,000 different IP address
A diagram of how DDoS attacks prevent legitimate internet traffic from being processed

Current Solutions:

The problem

- DDoS attacks are getting cheaper and cheaper to run
- Current solutions would fail if an attack exceeded the current bandwidth available by mitigation providers.
- The only way to prevent DDoS attacks from impacting victims is to have more resources than attackers can get ahold of

A Solution

- Make attacks more expensive to run by exhausting the attackers' resources
- Improve filtering by collecting more information on the source of the traffic

ROSE-HULMAN

Mohammad Noureddine Assistant Professor of Computer Science and Software Engineering

Puzzles are cryptographical challenges imposed on clients trying to access a webserver. Clients can solve puzzles by hashing through a nonce 2^{d-1} times. Therefore, Clients will have to provide more computational work for a larger d.

Strengths:

- All Devices must use computational resources to communicate with a server
- Stateless
- Makes attacks more expensive to run (60% more CPU utilization)
- Computer handles the work not the user

Weakness:

- Fairness issue between devices with strong and weak computational resources
- Computation must happen at kernel level

OUR ARGUMENT

heodore Yin

Undergraduate Computer Science Major

Client puzzles with scalable difficult deployed on a flexible network can mitigate the affects of a modern DDoS attack

Where R is the number of resources the server would need to use to fulfill a client's request, we can scale the difficulty (d) like so $P \uparrow the m d \uparrow red if P + the m d \downarrow$

 $R \uparrow$ than $d \uparrow$ and if $R \downarrow$ than $d \downarrow$

Implementing this client puzzle protocol system is even easier today with a cloud architecture using software like intel's DPDK that runs applications at kernel level

