PURDUE

CERAS

The Center for Education and Research in Information Assurance and Security

Fairness Debugging of Tree-based Models using Machine Unlearning

Student: Tanmay Surve Mentor: Dr. Romila Pradhan

Motivation and Introduction

- Concern continues to mount that ML systems reinforce systemic biases and discrimination often reflected in their training data.
- There has not been much work on understanding and debugging tree-based classifiers in the context of fairness.
- Tree-based ML models, such as decision trees and random

forests, are one of the most widely used ML models.

Following machine unlearning advances are utilized to find fairness-based bias inducing subsets in the training dataset:

Experimental Setup

Conclusion and Future Works

- German Credits dataset [3] (1000 data points, 20 features, sensitive attribute – "age", prediction task: binary classification , who should receive loan).
- Model Random Forest Classifier (DaRE RF [1] version).
- Fairness Metric Predictive Parity [4].

EXPERIMENT RESULTS			
Subsets	Support	Bias Reduction	Accuracy Reduction
housing = rent	18.12 %	88.87 %	5.40 %
property = real estate	28.25 %	84.25 %	0.60%
cred_amt = high, debtors = none	21.87 %	79.78 %	3.37 %
<i>age</i> = young, <i>employment</i> = < 1 year	15.12 %	83.77 %	4.70 %
<i>duration</i> = high, <i>existing_creds</i> = high	17.25 %	84.60 %	4.05 %
foreign_worker = yes, install_plans = bank	13.75 %	76.19 %	4.72 %

- Fairness-based bias inducing subsets of training data (removing which has negligible accuracy loss) can be optimally found using techniques from machine unlearning.
- We plan to expand this study to other standard datasets and fairness metrics used in the fairness literature [4].

References

[1] Brophy, J., & Lowd, D. (2021, July). Machine unlearning for random forests. In International Conference on Machine Learning (pp. 1092-1104). PMLR.

[2] Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A., Jia, H., Travers, A., Zhang, B., ... & Papernot, N. (2021, May). Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP) (pp. 141-159). IEEE. [3] Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. [4] Verma, S., & Rubin, J. (2018, May). Fairness definitions explained. In Proceedings of the international workshop on software fairness (pp. 1-7).

Acknowledgements

• This research was partially funded by a **Google Research Scholar Award**.

