

The Center for Education and Research in Information Assurance and Security

Machine Learning Supply Chain Security

Taylor R. Schorlemmer, Wenxin Jiang, James C. Davis

Software Supply Chain Security

SoK: Analysis of Software Supply Chain Security by Establishing Secure Design Properties. Proceedings of the 1st ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED) 2022.

Defining Software Supply Chains

Figure 1. Relationship between components (Actors, Artifacts, and Operations) in the supply chain and security principles.

Attacks Against Software Supply Chains Alteration Exploitation Propagation Compromise

Figure 2. Four-stage software supply chain attack pattern.

Security Principles for Software Supply Chains

We propose three supply chain security principles.

- 1. <u>Transparency</u> knowledge about actors, artifacts, and operations should remain readily available within the supply chain.
- 2. <u>Validity</u> actors, artifacts, and operations should remain correct. The connections between them should also remain correct.
- 3. <u>Separation</u> Connections between actors, artifacts, and operations should only exist when necessary – compartmentalizing components of the supply chain.

Applying Security Principles

7.1pp.1.1.0 000011101 1 111101p100											
Techniques	Transparency			Validity			Separation				
	Artifacts	Operations	Actors	Artifacts	Operations	Actors	Artifacts	Operations	Actors		
SBOM	✓	✓									
npm-audit	✓			✓							
Code scanning	✓			✓							
Dependabot features	✓			✓							
GitHub Actions		✓		✓	✓			✓			
Git Commit Signing			✓	✓							
Scope				✓			✓		✓		
Multi-Factor Authentication						✓					
In-toto	✓	✓		✓	✓			✓	✓		
Containerization							✓	✓	✓		
Version Locking							✓				
Sigstore	✓	✓	✓	✓	✓						
Mirroring and Proxies	√			√			√	√			

Table 1. How existing security techniques embody our proposed principles with respect to different components of the software supply chain.

Framewo	rks	SCIM	SCIM SLSA 4	
	Artifacts	✓	√	√
Transparency	Operations	✓	✓	✓
	Actors		SLSA 4	✓
Validity	Artifacts	✓	✓	✓
	Operations	✓	✓	✓
	Actors		√	✓
	Artifacts		✓	✓
Separation	Operations		✓	✓
	Actors			√

Table 2. How three common software supply chain security frameworks embody our proposed principles with respect to components.

Machine Learning Supply Chains

An Empirical Study of Artifacts and Security Practices in the Pre-trained Model Supply Chain. Proceedings of the 1st ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED) 2022.

Model Reuse Leads to a Supply Chain

Pre-trained models (PTMs) are machine learning models that have already been trained on data.

PTMs can be reused in several ways:

- 1. Fine Tuning
- 3. Quantization
- 5. Transfer Learning

- 2. Pruning
- 4. Knowledge Distillation

Open-source PTMs are often shared on model hubs.

Model Hubs

PTMs are hosted on three types of model hub. They are distinguished by their contribution workflow.

<u>Open</u>

2. Gated

3. Commercial

Figure 3. Model contribution and distribution workflow for open, gated, and commercial model hubs.

Threats to Model Hubs

Repository 2012

Threat Models:

- Insider
- Outsider

Risks:

- PTM Discrepancies
- Maintainers Reach

Maintainers Figure 5. Maintainer access to PTM repositories.

8000

Open hubs face more threats due to a lack of control features. They employ **security practices** to mitigate those threats.

1. Permission Models

2. Organization Verification

3. Commit Signing

Future Work: Signing in the MLSC

Figure 6. Representation of current signing protocols in the ML supply chain.

