CERIAS

The Center for Education and Research in Information Assurance and Security

Shuffle-based Private Set Union: Faster and More Secure

Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, Dawu Gu Presented in USENIX Security 2022

Abstract

- Designed two faster and more secure PSU protocols;
- Proposed and designed a generalized Reversed Private Membership Test (g-RPMT);
- Pointed out a security issue in the protocol of [KRTW19] and avoided it in our protocol.

Runtime (in seconds) Communication (in MB)

[KRTW19]	263.476	2470.11
Ours	48.703	1338.79
$ X = Y = 2^{20}$ in LAI	N setting.	

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from symmetric-key techniques. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 636–666.

. . .

Design Framework

- To avoid splitting set *Y*;
- To guarantee that set Y only needs to be processed once.

Two PSU Protocols

Π_{PSU}^R by Shuffling Set Y ($X = Y, X \gg Y$)

Optimization

Π_{PSU}^{S} by Shuffling Set X (X \ll Y)

Basic scheme

Performance

		D	set size n							
		Protocol	2^8	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	2^{22}
Time (s)	WAN	18]	1.064	1.379	2.164	5.326	17.541	86.358	333.073	1459.539
		$\Pi^{ m R}_{ m PSU}$	0.671	0.892	1.132	1.778	4.412	16.104	67.756	341.758
		Π_{PSU}^{S}	0.712	0.993	1.238	2.214	6.233	22.78	102.039	458.731
	LAN	1 8]	0.578	0.69	1.278	3.551	13.285	69.19	263.476	1191.703
		$\Pi^{ m R}_{ m PSU}$	0.265	0.308	0.412	0.87	2.702	10.751	48.703	251.091
		Π_{PSU}^{S}	0.274	0.32	0.434	1.051	3.452	13.382	60.16	279.97
Comm.(MB)		1 8]	0.41	1.86	7.72	31.8	131.17	600.62	2470.11	10233.28
		Π^{R}_{PSU}	0.22	0.814	3.576	15.848	70.198	307.192	1338.79	5779.599
		Π_{PSU}^{S}	0.376	1.554	7.019	31.381	140.604	617.654	2725.932	11746.69

Table 5. Comparisons of total runtime (in seconds) and communication (in MB) between $\Pi_{\mathsf{PSU}}^{\mathsf{R}}$, $\Pi_{\mathsf{PSU}}^{\mathsf{S}}$ and $[\mathbb{T8}]$ with a single thread in WAN/LAN settings where $n_1 = n_2 = n$. Best results are marked in bold.

