CERIAS

The Center for Education and Research in Information Assurance and Security

Trustworthiness Re-use of Pre-trained Neural Networks (ICSE'23)

Wenxin Jiang, Taylor R. Schorlemmer, James C. Davis

Motivation

Figure 1. Package download rates comparing two software package registries, NPM and PyPi, with the leading DL model registry, Hugging Face.

Figure 2. Components of traditional packages and PTM packages

Methodology

Figure 2. Relationship between RQs and methodology.

Results

Figure 3. Diagram of the four-stage decision making model for PTM reuse.

The software engineers we interviewed broadly followed four steps.

- 1. Identify a task and determine if reuse is appropriate.
- 2. Select an architecture and a particular PTM.
- 3. Apply reuse techniques and evaluate model performance a potentially repetitive stage.
- 4. Deploy the models.

Figure 4. Proportion of models with standardized machine-readable performance claims. Organized by PTM task type.

Figure 5. Percent of models using a particular architecture or trained on a specific dataset.

Implications

- * Model audit: large-scale measurements
- Infrastructure: recommendation systems
- PTM standardization: Information extraction, ONNX
- Adversarial attack detection: detection tools

PTMTorrent Dataset for Mining Open-source Pre-trained Model Packages (MSR'23)

Sibling

ModelHubURL: string

ModelHubName: string

MetadataFilePath: string

MetadataObjectID: integer

Data Schema

HFTorrent

Data Collection

Figure 6. Data collection and processing workflow for PTMTorrent. We standardize data and metadata based on a common PTMTorrent data schema.

Name	# Models	Data Size
Hugging Face [24]	12,401	61TB
Model Zoo [20]	3,245	115GB
PyTorch Hub [21]	49	1.5GB
ONNX Model Zoo [22]	185	441MB
Modelhub [23]	33	721MB
PTMTorrent	15,913	~61TB

Table 1.

Number of
models and
storage size for
each collected
model registry.

Category modelld: string slug: string rfilename: string title: string sha: string size: null slug: string enum lastModifed: string description: string blob id: null title: string enum stars: intege tags: string∏ Ifs: null short title: string enum link: string pipeline tag: string framework: string enum siblings: object[] Config private: boolean categories: object[] architectures: string[] ONNXTorrent (Model) author: null model type: string config: object ld: integer ONNXTorrent (Hub) CardData securityStatus: null Model: string ld: integer tags: string[] id: string ModelClass: string language: string id: string ModelPath: string ModelREADMEPath: string license: string cardData: object Paper: string RepoREADMEPath: string datasets: string[] likes: integer ONNXVersion: string Paper: string downloads: integer Accuracy: string Description: string **PTTorrent** library_name: string Dataset: string enum HFSpaceURL: string Id: integer OpsetVersion: string Category: string Category: string enum ModelAuthor: string Github URL: string **PTM Torrent** ModelDescription: string ModelSampleSize: string ld: integer MHTorrent ModelURL: string ModelSamplePath: string Modelhub: object ld: string GitHubURL: string ModelName: string name: string ColabURL: string ModelURL: string type: string DemoURL: string Dataset ModelOwner: string github: string ModelOwnerURL: string DatasetOwner: string github_branch: string enum Modelhub DatasetURL: string LatestGitCommitSHA: string backend: string[]

MZTorrent

Figure 7. PTMTorrent's data schema. *Grey boxes*: general schema shared by each model hub. *Colored boxes*: customized schema for hub-specific data.

gpu: boolean

Future Work

- Supporting future PTM supply chain analysis.
- Expanding PTM model registry analysis.
- Furthering the state of mining tool development.

More Information

ModelPaperDOIs: string[] [0..1]

ModelArchitecture: string [0..1]

ModelTask: string [0..1]

Datasets: object[] [0..*]

DatasetOwnerURL: string

DatasetPaperDOI: string [0..1]

DatasetUsages: string[] [0..1]

DatasetName: string

