Impact of Cyber Attacks on Traffic State Estimation for Connected and Autonomous Vehicles (CAVs) Systems

Eunhan Ka¹, Satish V. Ukkusuri¹
¹ Lyles School of Civil Engineering, Purdue University
Email: kae@purdue.edu, sukkusur@purdue.edu

INTRODUCTION

Network Traffic Dynamics
• Model traffic state dynamics over time in road networks
• Input: Inflow rate, Trip length distribution, Initial average speed (v) and traffic density (k) equation (v = f(k))
• Output: Traffic state variables (e.g., speed (v), density (v), flow rate (q))
• Limitations: 1) Hard efforts in parameter calibrations; 2) Discretized solution algorithms

Physics-Informed Deep Learning (PIDL)
• Integrate deep learning (DL) models and physics models

Cyber Attacks on Connected and Autonomous Vehicles
• Connected and Autonomous Vehicles (CAVs): Alleviate traffic congestion, enhance transportation efficiency, and reduce accidents
• Examples of cyber attacks on vehicles: 1) Remote hacking in 2015 (Chrysler) 2) Attacks on controller area network bus in 2019 (BMW)
• Potential attacks: 1) Infrastructure attacks (e.g., data theft, data poisoning); 2) Attacks on machine learning systems (e.g., data poisoning, escape attacks)

Research Questions
• How much do Cyber attacks on machine learning systems on the PIDL model's input affect traffic state estimation?

Objectives
• Develop the framework for assessing the impacts of cyber attacks with PIDL models
• Quantify the impacts of cyber attacks on traffic state estimation with PIDL models

PRELIMINARIES

Generalized Bathtub Model (GBM)'s Conservation Laws
(1st Law: Conservation of trip-miles)

\(\lambda(0)B(0) + \int_0^t f(s)B(s)ds = \int_0^t (\lambda(s) + v(s))ds = \lambda(t)B(t) \)

Initial entering trip-miles
Added trip-miles until time t
Processed trip-miles until time t
Remaining trip-miles

(2nd Law: Conservation of total trips)

\(G(t) = \lambda(0) + F(t) - \lambda(t) \)

Cumulative in-flux
Initial entering vehicles
Number of active vehicles

(3rd Law: Conservation of the number of trips with remaining distances)

\(\frac{\partial}{\partial t} K(t, x) - \frac{v(t)}{x} \frac{\partial}{\partial x} K(t, x) = f(t)(\phi(t, x), x) \)

\# of trips with a remaining distance not smaller than x
\# of trips with a remaining distance not smaller than x\+v(t)dt

METHODOLOGY

Framework of PIDL-GBM
• Input: Observation \((0), (t, x, k) \); Auxiliary points \((A), (t, x, k) \); Ground-Truth \((Y), K(t, x) \); Trip information \((v(t), f(t), \phi(t, x)) \)
• PIDL-GBM: Multi-layer Neural Network, Auto Differentiation, Loss Function
• Output: Learned network weights \((w^*) \) → Estimation of \(K(t, x), \hat{K}(t, x) \)

Cyber Attacks
• Escape attacks
 • Assume that escape attacks randomly remove input data in PIDL-GBM
 • Escape attacks hinder traffic state estimation by manipulating input data

EXPERIMENTS

• Study Area: Indianapolis road network (35,742 nodes and 49,455 links)
• Data Collection: Mobile data (14.4 M unique devices and 4.8 B records)
• Ratio of attacks \(r_a \) = \{0, 10, 20, …, 90\%\}; Performance Metrics: RMSE

<table>
<thead>
<tr>
<th>r_a</th>
<th>0 %</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>0.0663</td>
<td>0.0647</td>
<td>0.0853</td>
<td>0.0859</td>
<td>0.0860</td>
<td>0.1074</td>
<td>0.0977</td>
<td>0.0967</td>
<td>0.1035</td>
<td>0.1211</td>
</tr>
</tbody>
</table>

(No attack)

Red: Underestimation
Blue: Overestimation