CERIAS

The Center for Education and Research in Information Assurance and Security

Impact of Cyber Attacks on Traffic State Estimation for Connected and Autonomous Vehicles (CAVs) Systems

Eunhan Ka¹, Satish V. Ukkusuri¹

¹ Lyles School of Civil Engineering, Purdue University Email: kae@purdue.edu, sukkusur@purdue.edu

Urban Mobility, Networks and Intelligence Lab

INTRODUCTION

Network Traffic Dynamics

- Model traffic state dynamics over time in road networks
- **Input:** Inflow rate, Trip length distribution, Initial average speed (v) and traffic density (k) equation (v = f(k))
- Output: Traffic state variables (e.g., speed (v), density (v), flow rate (q))
 Limitations: 1) Hard efforts in parameter calibrations; 2) Discretized solution algorithms

METHODOLOGY

Framework of PIDL-GBM

- Input: Observation (0), (t_o, x_o) ; Auxiliary points (A), (t_a, x_a) ; Ground-Truth (Y), $K(t_o, x_o)$; Trip information $(v_r(t), f(t), \tilde{\varphi}(t, x))$
- PIDL-GBM: Multi-layer Neural Network, Auto Differentiation, Loss Function
- Output: Learned network weights $(\mathbf{w}^*) \rightarrow \text{Estimation of } K(t, x); \widehat{K}(t, x)$

Physics-Informed Deep Learning (PIDL)

Integrate deep learning (DL) models and physics models

Source: https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/

 Advantages: 1) No parameter calibrations; 2) Continuous solution algorithms

Cyber Attacks on Connected and Autonomous Vehicles

- Connected and Autonomous Vehicles (CAVs): Alleviate traffic congestion, enhance transportation efficiency, and reduce accidents
- Examples of cyber attacks on vehicles: 1) Remote hacking in 2015 (Chrysler) 2) Attacks on controller area network bus in 2019 (BMW)
- Potential attacks: 1) Infrastructure attacks (e.g., data theft, data poisoning); 2) Attacks on machine learning systems (e.g., data poisoning, escape attacks)

Research Questions

How much do Attacks on machine learning systems on the PIDL

Escape attacks

- Assume that escape attacks randomly remove input data in PIDL-GBM
- Escape attacks hinder traffic state estimation by manipulating input data

model's input affect traffic state estimation?

Objectives

- Develop the framework for assessing the impacts of cyber attacks with PIDL models
- Quantify the impacts of cyber attacks on traffic state estimation with PIDL models

PRELIMINARIES

Generalized Bathtub Model (GBM)'s Conservation Laws (1st Law: Conservation of trip-miles)

 $\lambda(0)B(0) + \int_0^s f(s)\tilde{B}(s)ds - \int_0^s f(s)\tilde{B}(s)ds = \int_0^s f(s)ds = \int_0^s f$ $\lambda(s) v(s) ds = \lambda(t) B(t)$ Added trip-miles Remaining Initial entering Processed triptrip-miles until time t miles until time t trip-miles (2nd Law: Conservation of total trips) Cumulative in-flux $G(t) = \lambda(0) + F(t) - \lambda(t)$ Cumulative out-flux Initial entering Number of active vehicles vehicles (3rd Law: Conservation of the number of trips with remaining distances) $\frac{\partial}{\partial t}K(t,x) - v(t)\frac{\partial}{\partial x}K(t,x) = f(t)\widetilde{\Phi}(t,x) \text{ # of entering trips with a remaining distance not}$ # of trips with a remaining # of trips with a remaining smaller than x distance not smaller than x distance not smaller than x+v(t)dt

Study Area: Indianapolis road network (35,742 nodes and 49,455 links)
Data Collection: Mobile data (14.4 M unique devices and 4.8 B records)

• Ratio of attacks $(r_a) = \{0, 10, 20, \dots, 90\%\}$; Performance Metrics: RMSE

r_a	0 %	10%	20%	30%	40%	50%	60%	70%	80%	90%
RMSE	0.0603	0.0647	0.0853	0.0859	0.0860	0.1074	0.0977	0.0967	0.1035	0.1211

(No attack) (log $\hat{K}(t, x) - \log K(t, x)$] of PIML Model ($\alpha = 0.5$) [log $\hat{K}(t, x) - \log K(t, x)$] of PIML Model ($\alpha = 0.5$) $r_a = 0\%$ (No attacks) (No attacks) $r_a = 0\%$ (No attacks) (No attacks) $r_a = 0\%$ (No attacks) (No

time step (1 time step = 15 minutes)

time step (1 time step = 15 minutes)

