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INTRODUCTION

Network Traffic Dynamics

 Model traffic state dynamics over time in road networks

 Input: Inflow rate, Trip length distribution, Initial average speed (v) and
traffic density (k) equation (v = f (k))

«  Output: Traffic state variables (e.g., speed (v), density (v), flow rate (q))

 Limitations: 1) Hard efforts in parameter calibrations; 2) Discretized
solution algorithms

Physics-Informed Deep Learning (PIDL)

 Integrate deep learning (DL) models and physics models

Training a physics-informed
neural network
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Source: https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
« Advantages: 1) No parameter calibrations; 2) Continuous solution

algorithms
Cyber Attacks on Connected and Autonomous Vehicles

 Connected and Autonomous Vehicles (CAVs): Alleviate traffic
congestion, enhance transportation efficiency, and reduce accidents

« Examples of cyber attacks on vehicles: 1) Remote hacking in 2015
(Chrysler) 2) Attacks on controller area network bus in 2019 (BMW)

 Potential attacks: 1) Infrastructure attacks (e.g., data theft, data
noisoning); 2) Attacks on machine learning systems (e.g., data
Doisoning, escape attacks)

Research Questions

« How much do Attacks on machine learning systems on the PIDL
model's input affect traffic state estimation?

Objectives

« Develop the framework for assessing the impacts of cyber attacks
with PIDL models

«  Quantify the impacts of cyber attacks on traffic state estimation with PIDL
models

PRELIMINARIES

Generalized Bathtub Model (GBM)’s Conservation Laws

(15t Law: Conservation of trip-miles)
t

t
A(0)B(0) + f f(s)B(s)ds — f A(s)v(s)ds = A(t)B(t)
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(2"d Law: Conservation of total trips) cumulative in-flux
G(t) =A(0) + F(t) — A(t)
Cumulative out-flux Initial entering Number of active

vehicles vehicles
(3"d Law: Conservation of the number of trips with remaining distances)

iK(t X) — v(t) J K(t x) = f(£)DP(t, x)# of entering trips with a

. . ot remaining distance not
# of trips with aremaining  # of trlps W|th a remaining smaller than x

distance not smaller than X djstance not smaller than x+v(t)dt

PIDL-GBM

METHODOLOGY

Framework of PIDL-GBM

* Input: Observation (0), (t,, x,); Auxiliary points (4), (t,, x,); Ground-Truth

(Y), K(t,, x,); Trip information (v,(t), f(t), &(t, x))
* PIDL-GBM: Multi-layer Neural Network, Auto Differentiation, Loss Function
- Output: Learned network weights (w*) = Estimation of K(t, x); K(t, x)
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Multi-layer Neural Network Physics-Informed Learning

Auto Loss Function
Input Layer Hidden Layer Output Layer Differentiation
Data Loss (L 4:4)
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Learned network parameters
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Escape attacks

* Assume that escape attacks randomly remove input data in PIDL-GBM
» Escape attacks hinder traffic state estimation by manipulating input data

EXPERIMENTS

 Study Area: Indianapolis road network (35,742 nodes and 49,455 links)
- Data Collection: Mobile data (14.4 M unique devices and 4.8 B records)
* Ratio of attacks (r;) = {0, 10, 20, ..., 90%}; Performance Metrics: RMSE
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