Reverse execution with persistent data structures

Omar Roth

Advisor: Joseph Hollingsworth
ROSE-HULMAN
INSTITUTE OF TECHNOLOGY

Abstract/Introduction Methods Results

Reversible debuggers are useful tools for developing and deploying » Created library for tracking memory, provides "version control” for » Our debugger currently supports reverse breakpoints, reverse-step,
modern applications. However, due to their high memory requirements arbitrary memory regions reverse-continue, as well as normal forward debugging supported by

and runtime overhead, their functionality is generally reserved for rare * Created debugger that injects into existing application, exposes stub GDB
cases (e.g., identifying short-term memory corruption). This that connects to GDB * After reverse-step, the state of the program can be modified and re-

paper describes an alternative approach for implementing a low- executed.

overhead memory snapshotting mechanism using fully persistent data njected Info Rugay App's Adress Space * Performance results are forthcoming
structures. Memory usage and performance analyses will be presented procees S T
and compared against alternative implementations.

gdb gdbserver Buggy App

reverse-siep ptrace()

Background/References

v

libpbwvt.so

* Fully persistent data structure: Immutable data structure that returns povt_commit
a copy of itself when modified. All copies retain the same algorithmic povi_track_range |
complexity guarantees (i.e., older versions don't get slower). | povt_checkout Qzeggﬁéirjﬁgfzfgt'g%n .

* Fully reversible execution: Execution of a program that can move continue
forwards and backwards, can be modified in a previous state, and
then run forward (supports divergent re-execution).

Data structure of choice is persistent bit-partitioned hash trie with
hash-consing. This allows us to identify duplicate sub-tries, and
provies O(log32(n) updates.

Writes to memory are tracked through page-faults, "compacted”
and set to a transient (writable) state until the next commit.

timeline
cl | c2 | c3

char myArr[0x100 |;

Goal(s)/RQs] = 5
myArr [2] 2:
gtate_.commit(); [f/ ¢l

1. Can overhead for Alice be pushed down to ~20% of wall-clock i sl
time while still supporting fully reversible execution for unmodified e

multi-threaded userspace applications? state_commit (); // c3 Future WOFk/ACkI]OWlEdngEHtS

2. Can we support fully reversible execution for Alice with less than T o oy s, o g | | — = , it icati
~20% space overhead (as compared to uninstrumented execution) ;?1118;15 é?n?fifﬂfﬂi?%ﬂfizoi?phcate e xtendlng our debugger to.support multithreadea app |ca.t|ons
Can our library be used to implement mult-shot continuations,

for long-running applications? | |
transactional memory, backtracking search?

Integrate into QEMU: Would provide full-system reversible
debugging

	Reverse execution with persistent data structures

