
Reverse execution with persistent data structures
Omar Roth
Advisor: Joseph Hollingsworth

Abstract/Introduction

Background/References

Methods Results

Future Work/Acknowledgments

Goal(s)/RQs

Reversible debuggers are useful tools for developing and deploying 
modern applications. However, due to their high memory requirements 
and runtime overhead, their functionality is generally reserved for rare 
cases (e.g., identifying short-term memory corruption). This 
paper describes an alternative approach for implementing a low-
overhead memory snapshotting mechanism using fully persistent data 
structures. Memory usage and performance analyses will be presented 
and compared against alternative implementations.

1. Can overhead for Alice be pushed down to ~20% of wall-clock 
time while still supporting fully reversible execution for unmodified 
multi-threaded userspace applications?

2. Can we support fully reversible execution for Alice with less than 
~20% space overhead (as compared to uninstrumented execution) 
for long-running applications?

• Fully persistent data structure: Immutable data structure that returns 
a copy of itself when modified. All copies retain the same algorithmic 
complexity guarantees (i.e., older versions don't get slower).

• Fully reversible execution: Execution of a program that can move 
forwards and backwards, can be modified in a previous state, and 
then run forward (supports divergent re-execution).

• Created library for tracking memory, provides "version control" for 
arbitrary memory regions 

• Created debugger that injects into existing application, exposes stub 
that connects to GDB 

• Extending our debugger to support multithreaded applications
• Can our library be used to implement mult-shot continuations, 

transactional memory, backtracking search?
• Integrate into QEMU: Would provide full-system reversible 

debugging

• Our debugger currently supports reverse breakpoints, reverse-step, 
reverse-continue, as well as normal forward debugging supported by 
GDB

• After reverse-step, the state of the program can be modified and re-
executed.

• Performance results are forthcoming

After reverse-stepping, 
we can change state and 
continue

• Data structure of choice is persistent bit-partitioned hash trie with 
hash-consing. This allows us to identify duplicate sub-tries, and 
provies O(log32(n) updates.

• Writes to memory are tracked through page-faults, "compacted" 
and set to a transient (writable) state until the next commit.


	Reverse execution with persistent data structures

