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Privacy Risks of Neural Language Models
• Deep neural language model-based word representations encode spurious

associations learnt from natural language text
• Adversaries can reverse-engineer private information and exploit neural LMs

• Current privacy preservation methods cause privacy leakages
• Modify training objectives to achieve privacy

Proposed Research Objectives
How effectively can steganographic models of privacy preservation 

obfuscate spurious associations (implicit and explicit) without 
compromising data utility?

• Design VSS applicable on-top-of LM representations to hide spurious
associations

• Evaluate the representation utility post-VSS across general purpose LMs
• Evaluate the provable privacy guarantees of VSS

Vector Space Steganography (VSS)
Key Idea: Create privacy-preserving representations such that the algorithm
• can be applied as a post-processing step
• is interpretable
• retains utility

• Obfuscate original representation using steganographic candidates generated
from the vector space geometry

• Candidates generated by reversing the steganalysis criteria described for
multidimensional vectors

• Aggregate candidates to generate modified representation

Types of Attacks
Type Knowledge

Black-Box 𝑥′

Grey-Box 𝑥! + 𝑔
𝑔 ⊂ [𝑐, 𝐿𝑀, 𝐴, 𝑟]

White-Box 𝑥! + 𝑐 + 𝐿𝑀 + 𝐴 + 𝑟
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𝑥 : Original Representation 𝐴 ∶ Cosine Similarity Threshold
𝑥! : Private Representation 𝑟 : Distance Threshold
𝑐 : Cover Text 𝐿𝑀 : Language Model

Takeaways

• Spurious associations learnt by neural language models can lead to privacy risks
• Propose vector space steganography, using the vector representation geometry

to hide original representations
• Protects training data privacy and maintains data utility at minimal cost
• Quick implementation on-top of any state-of-the-art language models
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