CERIAS

The Center for Education and Research in Information Assurance and Security

2022 - ESS - 95C-2BE - Griller — A framework for under-constrained fuzzing - Siddharth Muralee

GRILLER — A FRAMEWORK FOR UNDER CONSTRAINED FUZZING

Giovanni Vigna?, Christopher Kruegel?

Siddharth Muralee?!, Jayashree Srinivasan?i, Akul Pillait, Antonio Bianchi!, Aravind Machiry? furss
@ PurSeclLab

WHY ?

Fuzzing has been proven effective In
automatically finding bugs, however:

» Critical real-world software Is complex
and take input from several interfaces

Purdue University!, University of California, Santa Barbara? @

tom'sHAI

TRENDING

f Reviews A new ProFTPD vulnerability exposes servers to hack
July 23, 2019 By Pierluigi Paganini

b Digital ID Hacktivism Intelligence Internet of Things Laws and regulations =~ Malware

EXTENDED COOKIE POLICY Contact me

such as sockets, pipes

* Not all functions inside an application are

Interesting to fuzz
HOW IT WORKS

By lan Evenden published 2 days ago

Patch already in place

il |

Target Function ()

'Dirty Pipe' Exploit Gives Any Linux or
Android User Root Privileges

Tom's Hardware is supported by its audience. When you purchase through links on our site, we may earn an affiliate commission. Learn more

OR R Function
Fuzzer

bO \ J

GRILLER APPROACH

Leaf Function
struct pool {

bool avail;
char *buf;
unsigned size;

b

int add elem(void *data,
const char *buf,
unsigned size) {
struct_pool *p = (struct pool *)data;
if (p->avail) {
p->buf = malloc(p->size*sizeof(char))
if (p->buf) {
p->avail = 0;
memcpy (p->buf,
buf, size);
}

return 9;

}

return -1;

}
Crashes

- Null pointer Dereference of p
@ - Buffer Overflow in p->buf
- Null pointer dereference of the argument buf

- Buffer Overread of the argument buf

Target
Program
oS 6‘
0001
01101
Filtered
crashes
v = 3 .gﬂ-ﬂ .
.30;3 . .30;3 . / \ .30;3 . .3% . % ..EI'IDEIE] * /
..El‘lnglgl. Eamnn ..El‘lnglgl. Crash ‘.E.E'E.E,- —— ’.E.E'E.E,- e N\ o*
e . Back 0. .
onstraints > . o fifie X
. | Tracking .*
Crashing Inputs Generator Crash Constraints \ y . .
_ -/ . .
®.
.EI oo e
 fie
PY []

Parent Function

struct pool GP[POOL SIZE];
enum rtype { ..,NEW, UPDATE,..};

int process _req(enum rtype r,
uint32_ t idx,
char *buf, uint32 t sz) {
if (idx < POOL_SIZE) {
GP[idx].size = size;
switch(r) {
case_UPDATE:

add_elem(&GP[idx], buf, sz);
break;
case NEW:
add_elem(&GP[idx], "HDR", 3); @
break;
}
}
}

Call Sites in Parent Function
- Valid Arguments provided at all callsites
@ - Possible only from
- buf can be null only from

- sz can be greater than size of buf only from

COMPARISON WITH OTHER FUZZERS

Tool/Technique Supiz:‘t:tg:‘b:;ra Y
LIBFUZZER Yes
OSS-Fuzz Yes
FTG Yes
FUZZGEN No
INTELLIGEN Yes
FUDGE No
GRILLER Yes

Handle Complex Automated Type-
Types? based Arglfments
Generation?
Yes No
Yes No
No i
No i
No No
No i
Yes Yes

Top Level Function

int handle req(enum rtype r,
uint32 t gidx,
int sockfd) {

char rbuf[MAX BUF SIZE];
int sz = MAX BUF_SIZE;

if (r == NEW) {

sz = read(sockfd, &rbuf, sizeof(rbuf));
if (sz <= 0)

return_-1:

process _req(r, gidx, &rbuf, sz);

}
}

Backtracking to top level function

@ - Sz can be less than 3, since it's coming from read
- buf is a local variable, hence can’t be null

- sz IS same as the size of the buffer

Automatic Crash

Triaging? Extensible
No No
No No
No No
No Yes
No Yes
No Yes
Yes Yes

WHAT ?

Automatically generate type-aware
trampolines to fuzz "deep” functions
Crash Triage and extract root cause
constraints via Symbolic Execution
Filter out false positives by back-tracing
along the call graph

Integrable with any existing fuzzer

FUZZING FUNCTIONS

()
Target
, Function N
.I:
\ 4 Y
4)

(2)
Type Ildentification

~

(1)
Input Space
|dentification

/

(3)
Synthesizing Data
Generators

|dentifies vague types :
char * to char[10]
void * to struct t *

Function Parameters,
Globals with Dominating Reads

R
o

Custom Generators
Created based on Type

\ 4
Target T (4) i
P rampoline J
rogram Generation and
P Insertion
Program with
Trampoline Inserted
\ 4
F r of
uzzero ©) Possible Crashes
Choice Targeted Function f
fz Level Fuzzing "

CURRENT WORK

Evaluating the efficiency of function-level
fuzzing across a wide variety of systems
software including, Operating systems,
file parsers, network applications, and
shared libraries.

Currently testing on applications in the
MAGMA dataset such as libpng, libxml
and, libsndfile.

Improving the scalability by using a
microservice architecture allowing
fuzzing via multiple interfaces.

Discivery Park

