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Motivation
• Billions of user accounts have been affected by password breaches

• An attacker who obtains hashes of user passwords launches a brute
force attack to guess the users’ passwords

• The attacker must evaluate the hash function millions or billions of
times

• Specialized hardware allows attackers to evaluate these functions
orders of magnitude faster than standard hardware, but memory
cost is relatively uniform across different types of hardware.

• Memory Hard Functions (MHFs) are functions that have high memory cost

• Leaked passwords hashed with MHFs are robust against offline brute-force
attacks

• Measures of memory hardness:

• Cumulative Complexity (CC): The sum (over all steps in the
computation) of the memory required to compute the MHF

• 𝒔-Sustained Space Complexity (𝒔-SSC): The number of steps
required to sustain 𝑠 bits of memory to computer the MHF.

• Data-dependent MHFs (dMHFs) are a broad class of MHFs which trade side-
channel resistance for easy constructions and asymptotically stronger CC

• In general, MHFs have weak SSC Guarantees; Can dMHFs perform better?

• dMHFs have much stronger SSC guarantees.
• We analyze four dMHFs of varying practicality:

• Dynamic EGS: asymptotically maximal SSC, but very
impractical

• Dynamic DRSample: practical MHF candidate with
almost maximal SSC

• Argon2id: already deployed and widely used, but
much weaker SSC than the others

• Our Construction: a theoretical construction with
maximal tradeoff with constant indegree

Contribution

Methods
• Instead analyze pebbling games on graphs
• Each round, pebbles can be placed on any (and all) nodes whose

parents are all pebbled
• Goal: place a pebble on the sink

• Pebbling: 𝑃1 = 1 , 𝑃2 = 2,3 , 𝑃3 = 3,4 , and 𝑃4 = 5
• 𝑐𝑐 𝑃 = 1 + 2 + 2 + 1 = 6
• 2-𝑠𝑠𝑐 𝑃 = 0 + 1 + 1 + 0 = 2

Our Construction

• Results of the following form:

• A pebbling strategy either sustains 𝑠 pebbles for 𝛺 𝑁 steps,
or has CC at least 𝐶

• Every graph has CC at most 𝑁2/2, so the goal is to require CC
𝜔(𝑁2) while keeping 𝑠 as large as possible

• Graphs with higher than constant indegree lead to MHFs that are
Impractical for common applications

Results

Dynamic Graph Indegree Sustained Space Cumulative Cost

Dynamic EGS 𝑂(log𝑁) 𝛺(𝑁) 𝛺 𝑁3

Dynamic DRSample 2 𝛺 ൗ𝑁 log𝑁 𝛺 ൗ𝑁3

log𝑁

Argon2id 2 𝛺 𝑁1−𝜖 𝛺 𝑁2+2𝜖

Our Construction 2 𝛺 𝑁 𝛺(𝑁3−𝜖)

• Open Question: can we use these pebbling arguments on dynamic
graphs directly prove similar SSC/CC trade-offs for their corresponding
dMHFs?
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• Dynamic pebbling graphs: a node 𝑣 can have a random edge from some
prior node 𝑟 𝑣 which is only visible to the pebbler once 𝑣’s predecessor is
pebbled

• ST-Robust graphs: 𝑁 inputs/outputs with high connectivity between them

• Our construction: 𝔾𝐷
𝑁 (pictured above)

• ST robust graph with 𝑁 inputs and 𝑁 outputs

• Pebbling graph 𝐷 overlayed onto the inputs

• Line graph at the end with random edges to outputs

• Intuition: high connectivity between inputs and outputs

• If a pebbling strategy uses relatively few pebbles, then (with high
probability) they need to repebble many inputs

• The inputs have high CC, so the strategy incurs high cost
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