

The Center for Education and Research in Information Assurance and Security

On the Multi-User Security of Short Schnorr Signatures with Preprocessing

Jeremiah Blocki

Seunghoon Lee

Department of Computer Science, Purdue University

Summary

- Schnorr Signatures: 4k bits long with k bits of security
- Short Schnorr Signatures: 3k bits long (truncating hash output)

Questions.

- k bits of multi-user security for short Schnorr signatures?
- Is the short Schnorr signatures secure against preprocessing attacks?

Our Result.

- Single/Multi-user security of short Schnorr signatures (in GGM+ROM)
- Multi-User Security of short Schnorr signatures against preprocessing
- Applicable to other Fiat-Shamir-based signatures

Schnorr Signature Scheme [2]

$Kg(1^k)$:	Sign(sk, m):
$sk \overset{\$}{\leftarrow} \mathbb{Z}_p$	$r \stackrel{\$}{\leftarrow} \mathbb{Z}_p; \ I \leftarrow g^r$
$pk \leftarrow g^{sk}$	$e \leftarrow H(I \ m)$
return (pk, sk)	$s \leftarrow r + sk \cdot e \mod p$ $return \ \sigma = (s, e)$
$Vfy(pk, m, \sigma)$:	2k bits $-2k$ bits
Parse $\sigma = (s, e)$; Com if $H(R m) = e$ then	pute $R \leftarrow g^s \cdot pk^{-e}$
return 1 else return 0	Short: truncate it to k bits!

k Bits of Multi-User Security

• If any attacker is given N public keys $\mathsf{pk}_1, \ldots, \mathsf{pk}_N$, one can forge a signature σ that is valid for *any one* of these public keys with probability $\leq t/2^k$, where t is the attacker's running time

Generic Group Model (GGM) [3]

- Any elements of a cyclic group $G = \langle g \rangle$ of order p can be encoded by binary strings of length ℓ , with encoding function $\tau: G \to \mathbb{G}$ (set of ℓ -bit strings)
- Key Idea: an adversary is only given access to a randomly chosen encoding of group elements
- On input $(\mathfrak{a},\mathfrak{b}) \in \mathbb{G} \times \mathbb{G}$ and $n \in \mathbb{Z}_p$, $\operatorname{Mult}(\mathfrak{a},\mathfrak{b}) = \tau \left(\tau^{-1}(\mathfrak{a}) + \tau^{-1}(\mathfrak{b})\right)$, $\operatorname{Inv}(\mathfrak{a}) = \tau \left(\left(\tau^{-1}(\mathfrak{a})\right)^{-1}\right)$, $\operatorname{Pow}(\mathfrak{a},n) = \tau \left(\left(\tau^{-1}(\mathfrak{a})\right)^n\right)$, if $\mathfrak{a},\mathfrak{b} \in \tau(G)$.

Our Results in Detail

Multi-User Security of Short Schnorr Signatures

Theorem (informal).

Given N public keys, any attacker making at most q queries can forge a short Schnorr signature with probability $\mathcal{O}((q+N)/2^k)$ in the GGM (of order $p\approx 2^{2k}$) plus ROM.

- If k=112 (i.e., $p\approx 2^{224}$) and $N=2^{32}$ (more than the half of the entire world population), an attacker making at most $q=2^{80}$ queries succeeds with probability $\leq \varepsilon \approx 2^{-32}$
- A naïve reduction loses a factor of N, i.e., $\varepsilon' \approx N\varepsilon \approx 1!$

Multi-User
Security of
Short Schnorr
Signatures
against
Preprocessing

Theorem (informal).

Given N public keys, any *preprocessing* attacker making $\leq q_{\text{pre}}$ queries and outputs an S-bit hint (preprocessing phase) and making $\leq q_{\text{on}}$ queries (online phase) can forge a key-prefixed short Schnorr signature with probability $\widetilde{\mathcal{O}}\left(\frac{SN(q_{\text{on}}+N)^2}{p}+\frac{q_{\text{on}}}{2^k}+\frac{Nq_{\text{pre}}q_{\text{on}}}{p^2}\right)$ in the GGM (of order $p>2^{2k}$) plus ROM.

- Why key-prefixing? \blacktriangleright Not to disallow e=0 signatures!
- Setting $p \approx 2^{2k}SN$ and $S = 2^{k/2}$ and $N = 2^{k/4}$, signature length: $k + \log_2 p \approx 3.75k$
- Still achieving k bits of multi-user security!

Similar bounds are applicable to other Fiat-Shamir-based signatures, i.e., key-prefixed Chaum-Pedersen-FDH signatures [5] and short Katz-Wang signatures [6]

- Katz-Wang signature length: 4k bits
- Our *short* Katz-Wang signature length: $3k + \log_2 N + \log_2 S + \log_2 (2k + \log_2 NS)$ bits (for preprocessing)

Our Techniques

The Multi-User Bridge-Finding Game

• The attacker's goal: find a *non-trivial linear relationship* between x_1, \ldots, x_N after making queries to the generic group oracles

(Add (Inv(\mathfrak{y}), $-\vec{a}_y$, $-b_y$) to \mathcal{L})

- A is even given access to $DLog(\cdot)$ for "fresh" queries
- A preprocessing attacker can win the game with probability $\mathcal{O}(SNq^2\log p/p)$
 - ✓ The proof adapts a compression argument [4]

Corollary. The 1-out-of-N discrete-log problem is hard even for a preprocessing attacker!

Reduction in the Preprocessing Setting

- A time-bounded $(\leq 2^{3k})$ preprocessing attacker
- Random oracle compression argument (if prob. of bad event too large ➤ can compress RO!)

Restricted Discrete-Log Oracle

 We consider a stronger attacker who is given access to a restricted discrete-log oracle DLog(·)

• Why restricted? ► To rule out trivial attacks!

Security Reduction

- Bridge inputs $au(x_1), \ldots, au(x_N)$ are public signing keys when simulating $\mathcal{A}_{\mathsf{sig}}$
- The reduction also make use of a programmable random oracle whenever $\mathcal{A}_{\operatorname{sig}}$ queries $\operatorname{Sign}_{j}(\cdot)$ for a particular user $j \in [N]$
- Probability of failure events is negligible:

References

- 1. Jeremiah Blocki and Seunghoon Lee. On the Multi-User Security of Short Schnorr Signatures with Preprocessing. EUROCRYPT 2022.
- 2. Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. CRYPTO '89, Springer, Heidelberg.
- 3. Victor Shoup. Lower Bounds for Discrete Logarithms and Related Problems. EUROCRYPT '97, Springer, Heidelberg.
- 4. Henry Corrigan-Gibbs and Dmitry Kogan. The Discrete-Logarithm Problem with Preprocessing. *EUROCRYPT 2018*.
- 5. David Chaum and Torben P. Pedersen. Wallet Databases with Observers. CRYPTO '92, Springer, Heidelberg.
- 6. Jonathan Katz and Nan Wang. Efficiency Improvements for Signature Schemes with Tight Security Reductions. CCS '03.

