CERAS

The Center for Education and Research in Information Assurance and Security

Unfair AI: It Isn't Just the Data

Chowdhury M R Haider, Chris Clifton

{chaider, clifton}@purdue.edu

Summary

Conventional wisdom: biased training data leads to biased models.

We show,

- Machine learning can be expected to introduce types of bias not found in the training data.
- Different group-wise optimal models with unequal accuracy leads to unfair optimal accuracy joint model w.r.t disparate impact. Likely occurrence due to systemic bias. *De-biasing* training data is insufficient to ensure machine learning fairness.

Example Scenario

- College admission prediction \bullet
- **Test score** best classifies **Caucasians**,
- **GPA** best classifies the **non-Caucasians**, but less accurate than test-score on Caucasian 20-

Datasets:

- Synthetic Fair Balanced Dataset (SFBD)
- COMPAS dataset (De-biased, balanced) Algorithms:
- ➢ Naïve Bayes,
- Prejudice Remover [1],
- Reduction Based Model [2]

 Table 1: Classifier Performance on SFBD

	α	ACC_p	ACCu	SR_{p}	, SR_u	FPR _p	FPR _u
NBC	0.25	99.6	87.4	21.	1 15.4	00.3	07.2
	0.50	99.4	84.4	49.9	9 49.4	03.0	25.9
	0.75	99.5	87.1	78.	3 85.6	13.6	61.3
PR	0.25	99.5	87.5	25.	0 21.4	00.3	06.1
	0.50	99.4	84.4	50.	1 49.1	00.6	14.7
	0.75	99.5	87.1	75.	6 75.8	02.8	30.2
RBC	0.25	99.5	87.5	22.	1 21.8	01.1	10.1
	0.50	99.4	84.4	50.	1 49.0	04.7	22.1
	0.75	99.5	87.1	76.	8 78.4	11.9	43.2
Table 2: NBC Performance on COMPAS FBD							
α	AC	C_p AC	C_u	SR_p	SR _u	FPR _p	FPR _u
0.25	73	.3 74	4.0	21.1	10.9	15.5	06.5
0.50	61	.8 62	1.6	52.4	41.6	52.1	30.3
0.75	75	.9 72	2.2 8	39.0	81.9	76.5	68.7
	14						

Figure 1: Feature Distributions were the unprivileged s less separable

Problem Formulation

Dataset,
$$D = \{x^{(k)}, y^{(k)}, s^{(k)}\}_{k=1}^{N}$$

Feature vector,
$$\mathbf{x}^{(k)} = \{x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\}$$

- Class labels, $y_i \in \{+, -\}$
- Sensitive attribute, $s_i \in \{p, u\}$

Base rate,
$$\alpha = \mathbb{P}(y^+ | s) = \mathbb{P}(y^+)$$

• Ratio of groups,
$$\beta = \mathbb{P}(p)/\mathbb{P}(u)$$

• $x_i^{sy} \sim \mathcal{N}(\mu_i^{sy}, \sigma_i^{sy})$ with $\sigma_i^{sy} = \sigma_i^s \perp s, y$

- $\mathcal{N}(\mu_i^{r},\sigma_i^{r})$ with σ_i^{r} Number of redlining features is 2r
- The rest n 2r are independent

Disparate Impact of dataset \mathcal{D} , $\mathbb{P}(y^+ \mid u)$ $DI(\mathcal{D}) =$

Result Summary

In this scenario,

Feature-2

We show that, if $DI(\mathcal{D}) = 1$, the Bayesian joint optimal model θ satisfies, $\mathbb{P}(\hat{y}^+|y^+,p) > \mathbb{P}(\hat{y}^+|y^+,u)$ $\mathbb{P}(\hat{y}^+|y^-,p) < \mathbb{P}(\hat{y}^+|y^-,u)$

 \checkmark True Positive Rate is higher for p \checkmark False Positive Rate is higher for u

In other words,

- **Favorable for the privileged**
- Unfavorable for the unprivileged

Result on synthetic and COMAPAS data support our claim. COMPAS dataset contains unfair labels which leads to deviation for $\alpha = 0.75$.

Disparate Impact of model θ (\hat{y} prediction), $DI(\theta) = \frac{\mathbb{P}(\hat{y}^+ \mid u)}{\mathbb{P}(\hat{y}^+ \mid p)}$

Assumptions

♣ *r* = 1, *n* = 2, *β* = 1 $\clubsuit \ \mu_1^{p+} - \mu_1^{p-} = \mu_1^{u+} - \mu_1^{u-} = \delta$ • $\mu_1^{u+} - \mu_1^{u-} = \mu_2^{p+} - \mu_2^{p-} = 0$ ♦ *p* is more separable than $u_1 \Rightarrow \sigma_1 < \sigma_2$

Discussion

study

- Systemic bias resulting from lack of diversity in feature design
- Dataset repair doesn't always work Ο
- Joint optimization of fairness and Ο accuracy is a step towards right direction Effect of other systemic bias, i.e., Ο disparity in noise rate, missing value rate, representation, etc., needs further

Furthermore, with $\alpha < 0.5$, $\mathbb{P}(\hat{y}^+|p) > \mathbb{P}(\hat{y}^+|u)$ Similarly, $\alpha > 0.5$ shows, $\mathbb{P}(\hat{y}^+|p) < \mathbb{P}(\hat{y}^+|u)$

□ The joint optimal model is expected to induce disparate impact even when the training data with imbalanced base rates is free from such bias.

Reference

- 1. Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J. (2012, September). Fairnessaware classifier with prejudice remover regularizer. In ECML PKDD (pp. 35-50). Springer, Berlin, Heidelberg.
- 2. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., & Wallach, H. (2018, July). A reductions approach to fair classification. In *ICML* (pp. 60-69). PMLR.R

Figure 2: Decision Boundary and Classifications