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» In both autonomous Vehicles (AVs) and connected vehicles (CVs), the localization

module, which provides accurate local and global positions, plays a critical role in
vehicle navigation and ITS applications.

» GPS spoofing attacks pose great challenges to safety applications of connected
vehicles (CVs) and localization of autonomous vehicles (AVs).

» This study proposes a generic detection framework to detect anomalies in the
localization module of AV/CV using learning from demonstration.
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» The anomaly detection framework consists of two steps: offline learning and online
detection

» Learning from demonstration is applied to learn the normal driving policy via
maximum entropy inverse reinforcement learning using historical trajectories.

» An anomaly classifier (i.e., a decision tree) is trained with both historical
trajectories and known attack trajectories.

» Observed trajectories are compared with predicted optimal trajectories from the
learned driving policy to detect anomaly.

Objective ratio, normality score and average displacement error are used as
classification features.

» QObijective ratio: OR = maXORt
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» The anomaly detection algorithm is validated against a Multi-Sensor Fusion attack
with the KAIST urban complex dataset and Forward Collision Warning (FCW)
attack with the NGSIM Lankershim Blvd. dataset.
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minimizeg 0" f (s, u)

s.t.Vehicle dynamic constraints

» Feature f includes different driving behaviors.

» Vehicle dynamic constraints represent the kinematics of vehicle motion,
assuming the vehicle follows the bicycle model.

» The weight vector @ is learned via inverse reinforcement learning.

Maximum entropy inverse reinforcement learning algorithm :

Compute the empirical feature vector over all demonstrations f, =
iZSjED f(s;, u;). Normalize the feature, denoted as f.

Initialize every entry of the weight vector @ with 1.

While —%;_, f(s?,u;) — f > threshold
{

For each demonstrated trajectory collected in the dataset

{

fix the initial condition and the environment states and optimize the trajectory.
The optimized trajectories are denoted as {s9, ..., s9 3.

}
The gradient can be calculated as Vy4L(0) = i}‘,j:lf(sf,uj) —f.

Update the parameter vector: @(k + 1) = 0(k) + yVgL(0), in which y is the
learning rate.
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> Performance of online detection on AV/CV threat model
AV threat model
FP rate FN rate Mean attack Mean detection |[Mean time to attack
success time (s) |time (s) success (s)
2/23 1/23 28.7 12.7 16.0
CV threat model
FP rate FN rate Mean attack Mean detection |[Mean time to attack
success time (s) |time (s) success (s)
2/49 1/35 4.7 2.6 2.1
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» AV threat model: 94% (47/50) trajectories can be identified no later than the
success time of the attack.

» CV threat model: 96% (81/84) trajectories can be identified no later than the
success time of the attack.
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