
CheckCBox: Automated and Zero Cost Spatial Memory Safety
Arun Kumar, Aravind Machiry

Purdue University

The Never Ending Trend of Spatial Safety Violations

Out-of-bounds Read NULL Pointer Dereference

Existing Approaches Have High Overhead (Porting and Performance)

ASAN and SoftBound CETS � High Performance Overhead
No Backward Compatibility and needs runtime changes

Completely rewriting existing legacy code in Safe languages is not viable.

Checked C to Rescue

Pointers annotated with Checked C types are
guaranteed to not have any spatial violations Complete Automated Conversion is not Feasible

Some regions of code will be still unchecked

Let's use RLBox to encapsulate
unchecked regions and add marshalling
between the regions.

Progress
• We were able to successfully encapsulate unchecked regions

using RLBox and create required marshalling stubs

• Working on formalizing Checked C semantics with RLBox

• [On going] Working on automated encapsulation of unchecked
regions into RLBox

CheckCBox: High level Idea

Challenges
• Automatically generating marshalling layers -

Interaction between checked/unchecked/tainted
types

• Handling Callbacks from “unchecked” region to
“checked” region

Out-of-bounds Write

Spatial Safety Violations still are the Major class of
vulnerabilities in Low-level system software.

Safe languages

Safe by design: Prevents memory corruption vulnerabilities.

What about Legacy code? Not feasible to rewrite.

Retrofitting Techniques

Address Sanitizer (ASan)

Slow (>= 50%).

Not backward compatible and need runtime changes.

Checked C
Fast

Backward compatible
_Ptr

_Array_ptr
_Nt_array_ptr

Can We Automatically Convert C to Checked C?

int *efunc();

int global;

int baz(int *p) {

*p = 1;

return 0;

}

int bar() {

int *a = efunc();

baz(a);

return 0;

}

int main(int argc, char **argv) {

int *b, *c;

char *str = argv[0];

b = &global;

baz(b);

c = b;

printf("%d", strlen(str));

return 0;

}

int *efunc();

int global;

int baz(int *p: itype(_Ptr<int>)) {

*p = 1;

return 0;

}

int main(int argc, _Array_ptr<_Nt_array_ptr<char>> argv) {

_Ptr<int> b;

_Ptr<int> c;

_Nt_array_ptr<char> str = argv[0];

b = &global;

baz(b);

c = b;

printf("%d", strlen(str));

return 0;

}

int bar() {

int *a = efunc();

baz(a);

return 0;

}

3C

int *efunc();

int global;

int baz(int *p: itype(_Ptr<int>)) {

*p = 1;

return 0;

}

int main(int argc, _Array_ptr<_Nt_array_ptr<char>> argv) {

_Ptr<int> b;

_Ptr<int> c;

_Nt_array_ptr<char> str = argv[0];

b = &global;

baz(b);

c = b;

printf("%d", strlen(str));

return 0;

}

int bar() {

int *a = efunc();

baz(a);

return 0;

}

CheckCBox

• Open Source: https://github.com/purs3lab/CheckC-Box

Contact:
• Arun Kumar (bhattar1@purdue.edu)
• PurS3 Lab: https://purs3lab.github.io/

Are you Curious?

2022 - ESS - 141-645 - CheckCBox: Automated and Zero Cost Spatial Memory Safety - Arunkumar Bhattar

https://github.com/purs3lab/CheckC-Box
mailto:bhattar1@purdue.edu
https://purs3lab.github.io/

