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Statistical RNG Attack against the KLIN Secure Key Exchange Protocol

Christiana Chamon, Shahriar Ferdous, Laszlo B. Kish

Secure Key Exchange
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Conversion of plaintext into a cipher

For decryption, conversion of cipher back into plaintext

Eve knows every detail the system except for the key.

The key is assumed to be generated from truly random numbers.

The KLIN Scheme

A statistical physical scheme based on the thermal noise of resistors
Classical (statistical) physical alternative of Quantum Key Distribution
(QkD)
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They have identical pairs of resistors, RA and RB.

The statistically independent thermal noise voltages represent the
noise voltages of RH and RL (RH > RL) of Alice and Bob, respectively,
which are generated from RNGs

At the beginning of each BEP, Alice and Bob randomly choose one of
their resistors to connect to the wire.

Alice and Bob (as well as Eve) use the mean-square voltage of the wire
to assess the bit status, given by the Johnson formula

Four possible resistance situations can be formed by Alice and Bob:
HH, LL, LH, and HL.
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The HH and LL cases represent insecure situations
The HL and LH cases represent secure bit exchange because Eve cannot
distinguish between the corresponding two resistance situations
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Random Number Generators

Computational vs. true RNGs

Computational RNGs collect randomness from various low-
entropy input streams and try to generate outputs
indistinguishable from truly random streams

The randomness of an RNG relies on the uncertainty of the
random seed and a long sequence with uniform distribution
The moment an adversary learns the seed, the outputs are
known, and the RNG is compromised.

Demonstration

Bilateral parameter knowledge: Eve measures the power along
the channel and only needs a single bit to do so
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Unilateral parameter knowledge: Eve uses Ohm’s Law and a
process of elimination
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Conclusion

If Eve knows the seed of both Alice’s and Bob’s RNGs, she can
crack the bit exchange with one bit of resolution

If Eve knows the seed of only Alice’s RNG, she can crack the
secure bit using the whole bit exchange period

Future work would involve the noises not being accurately
known but only noise with a nonzero correlation



