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Motivation

. Need for mobile systems that can implement computer
vision algorithms; drones, surveillance cameras.

(  POWER OUTAGE

. Low-power solutions can be deployed away from
electricity grid; critical in case of an infrastructure attack.

Challenges

. Bigger Deep Neural Networks (DNNs) = Better accuracy.

. Big DNNs perform millions of operations:
computation and memory accesses, need
high power CPUs and GPUSs.
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. Embedded devices like Raspberry Pi Zero,
cost only $5, with limited memory and
compute capability. Can’t run DNNSs.
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. DNNSs are not designed for battery-powered devices.

Where can we improve?

. Recent work has shown that DNNs 0 o 0 o C
have several redundancies!

. DNNs need millions of parameters to
identify different operations.

. Conventional DNN: perform
many different tasks which require
a large number of neurons.
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are made.

Bullding the tree

. Categories of the dataset are
grouped together based on their
similarity with each other.

. How to quantify the similarity?

. Use distances between
centroids of categories
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. Model Size | Number of | Val. [JResNet-Pruned BEVGG-Pruned M CondenseNet M MNN-Tree
Dataset Technique .
(KB) Operations | Error 4 3500
VGG-Pruned 17000 | 2060 M | 0.066 | =3
ResNet-Pruned 3,400 1,120 M | 0.069 5 3 2800
CIFAR-10 | DenseNet 4,200 9,388 M | 0.070 B E'EJ
CondenseNet 11,000 | 1,080 M | 0.034 c 2> = 2100
Wide ResNet 1,400 5248 M | 0.040 2 2 Y
MNN-Tree 390 33M | 0.079 S 15 @ 1400
VGG-Pruned 17,010 2,060 M | 0.252 > 1 Q
DenseNet 4200 | 9388 M | 0.171 5 0c = 700
CIFAR-100 | CondenseNet 11,000 1,080 M | 0.184 S
Wide ResNet 1,600 | 5248 M | 0.192 0 0
MNN-Tree 750 22M | 0.209 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
DenseNet 4,200 90,386 M | 0.017 .
SVHN Wide ResNet 1,400 | 5248 M | 0.016 Time ResNet | VGG | CondenseNet | MNN-Tree
e 20 LN Bl Load 0.320 | 0.400 1.340 0.039
EMNIST | INN-Tree 460 seM | 0078 Execution 0.900 | 0.160 4.860 0.160

Reduced model size by 53%-97%, energy by 67%-95%,
inference time by 66%-96%, number of operations by 96%-99%
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