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1 Adversaries slightly modify the original models by either poisoning
or retraining.
1 Adversarial training data include a mark or trigger in each adversarial
sample to cause the desired misbehavior (e.g. misclassification).
1 In testing time, any sample with the trigger in it is misclassified to a

Outputs

Correctly classified Incorrectly classified

predetermined class chosen by the adversary.
[ Detection is difficult because Trojan models behave as expected
when inputs do not include a trigger.

THREAT MODEL

Adversarial Sample Attack Trojan/Backdoor Attack

d Type: Inference-time attack.

 Strategy: Crafting adversarial
samples that cause
misclassification.

 Objective: Detriment of
performance of model (increase
misclassification rate)

d Applicability: Modifications are not
effective in all inputs. Any input X
must be uniquely crafted to
achieve an specific behavior.

d Real-world scenario: Adversary
needs to modify each sample with
unperceivable changes before
conducting the attack. Difficult to
achieve.

J Type: Training-time attack.

 Strategy: Data poisoning or model
re-training.

d Objective: Misclassification in a
controlled manner. Benign inputs
are classified as expected, while
inputs with trigger are
misclassified.

d Applicability: Modifications are
effective in any input. Any input X
with trigger t will be misclassified
as chosen by the adversary.

d Real-world scenario: Adversaries

can feed the model with an

adversarial sample (e.g. a road
stop sign with a sticker). Easy to
achieve.
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CONTRIBUTIONS

[ Innovative solution to protect computer vision architectures.
 Defense mechanisms for both categories Model Hardening and
Adversarial Input Detection.
] Classification based on the content of only.
K ] Tested on a variety of datasets and architectures.
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CONTENT FOCUS APPROACH

(2) Content and Styled
Image Generation

Styled Image
Generator
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 Intuition: Retraining the model with clean data using a variety of
styles for a particular input X will mitigate the effects of the trigger

 Model will focus on the silhouette of the object instead of

surrounding shapes and colors.

J Adversarial
execution.

Styled Image
Generator

DEFENSE STRATEGIES

(1 Model Hardening: Intended to improve the robustness of NNs, which is to
prevent adversarial samples from causing NN misbehaviors.
Identifies adversarial samples during
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(1 We propose a solution for both categories.
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Adversarial Input Detection

Adversarial
Input
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Input

v  Every input X is
transformed either to
its content (X.) or
styled (X;) version.

v The retrained model
M, is used to do the
classification after the
transformation of
input X.

v Input X is classified by
the original model M,,.

v' The content (X.) or
styled (X;) version of
the input Xis classified
by the retrained model
M..

v Input X is considered
adversarial if there is a
mismatch in the
classification.
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