CERIAS

The Center for Education and Research in Information Assurance and Security

Poisoning Attacks Against SVM based Anomaly Detection Techniques

Radhika Bhargava & Chris Clifton

Department Of CERIAS and Computer Science, Purdue University

PROBLEM

Adversary wants to hide from anomaly detection

 Adversary is unable to change their own data and still have the attack achieve its goals

ATTACK MODEL

Adversary's goal -

• Attacker wants to perform a targeted, integrity violation.

Adversary's knowledge –

- "The enemy knows the system".
- The adversary has knowledge of the training algorithm.

- Adversary can create fake points.
- How do we estimate the risk poised \bullet by such an attack?

- Attack Points
- Average No. Of Attack Points For Optimization Attack
- Avergae No. Of Attack Points For Heuristic Attack
- Estimated No. Of Attack Points

• Partial or complete information about the training set, such as its distribution.

Adversary's capability -

• The adversary can poison the dataset.

Attack Strategy –

• Make the neighborhood of the anomaly point a denser so that it "looks-like" a normal data point.

RESULTS

- Average No. Of Attack Points For Optimization Attack
- Avergae No. Of Attack Points For Heuristic Attack
- Estimated No. Of Attack Points

- ----- Average No. Of Attack Points For Optimization Attack
- ----- Avergae No. Of Attack Points For Heuristic Attack
- Estimated No. Of Attack Points

