CERIAS

The Center for Education and Research in Information Assurance and Security

Not All Equal: Stronger Password Protection via Differentiated Hashing Costs

Jeremiah Blocki, Wenjie Bai

Department of Computer Science, Purdue University

Introduction

- Severity of offline attack;
- Memory hard functions (MHFs) can be used to build ASIC resistant password hashing algorithms;
- A fundamental trade-off in the design of good password hashing algorithms:
 - should be sufficiently expensive to compute,
 - cannot be too expensive to compute.
- Rational Attacker keeps guessing until marginal guessing costs exceed marginal rewards.

Differentiated Hashing Cost Mechanism

- 1. First partitions all passwords into mutually exclusive τ groups $|G_i|$ with $i \in \{1, \dots, \tau\}$
- 2. For each of the passwords $|G_i|$ we assign the same hash cost parameter k_i

An Economic Model

- Attacker Strategy (π, B) : Check B top password in π list and
- Some passwords are so weak that protecting them is infeasible. A rational attacker will always check these passwords.

Key Insight

- A resource-constrained authentication server **should not** protect all passwords equally.
- Our mechanism does *not overprotect weak passwords* that are ulletdestined to be cracked, nor passwords that are strong enough to disinterest a rational offline attacker.

Password Creation

- then quit.
- Rational Attacker: Plays utility maximizing strategy (GAIN-COST).

$$U_{ADV}\left(v,\vec{k},(\pi,B)\right) = v \cdot \lambda(\pi,B) - \sum_{i=1}^{B} k(pwd_{\pi(i)}) \cdot \left(1 - \lambda(\pi,i-1)\right).$$

- Defender Action: Select cost parameters \vec{k}
 - subject to workload constraints
 - goal: Minimize attacker success rate $\lambda(\pi, B)$

Formal Stackelberg Game Model

In stage I, the authentication server commits hash cost vector \vec{k} for all groups of passwords;

In stage II, the adversary yields the optimal strategy (π, B) for cracking a random user's password.

$$\begin{cases} U_{SRV}(\overrightarrow{k}^*, v) \ge U_{SRV}(\overrightarrow{k}, v), & \forall \overrightarrow{k} \in \mathscr{F}_{C_{max}}, \\ U_{ADV}\left(v, \overrightarrow{k}^*, (\pi^*, B^*)\right) \ge U_{ADV}\left(v, \overrightarrow{k}^*, (\pi, B)\right), & \forall (\pi, B) \end{cases}$$

Conclusions

- We present a Stackleberg game model to capture the essentials of the interaction between leader and follower.
- We design highly efficient algorithms to provably compute equilibrium strategy profile.

Emperical Analysis

- We analyze the performance of our differentiated cost password hashing algorithm using empirical password data.
- The percentage of passwords that would be cracked by a rational attacker is reduced by up to 44%.

LinkedIn dataset

