
Duress Authentication via Partially Homomorphic Encryption
Ben Harsha, Mikhail Atallah

Overview

• Duress Authentication: An authentication system that allows
users to send duress signals

• Might be used in places like banks as a sort of silent alarm
• Current systems have fatal flaws or require a third party to

check all logins
• Current systems are either hard to use or easy to bypass
• We develop a new method to allow duress authentication
• Simple implementation by changing password storage method

Duress Adversaries

We consider adversaries who are physically forcing someone
to reveal their password, whether via force, blackmail, or
some other threat. In an attack this adversary:
• Knows the system
• Compromises multiple administrators
• Monitors all network traffic
• Has full system access
• Can request as many responses from those they are

attacking as they like
• Cautious – They will never perform an action that is sure

to trigger a duress signal

The Failings of Current Duress Systems

• Many claims to offer duress authentication
• Included in many US Patents, often as part of a larger system
• All include some flaw that makes them impractical or vulnerable
• They fall into two categories:
• Two Passwords: Each user has two passwords. One normal and one duress.

• People struggle to remember passwords
• Adversary can guess an win 50% of the time

• Modified Passwords: A user modifies their password in some predictable way
• Type in a random number at the end – vulnerable to typos
• Move first letter to the end – very obvious

Securepassword123 → ecurepassword123S
A standard password transforms into an obvious duress signal

Our Requirements

For a useful duress password system we require the following features or properties

• Easy to use: The system should require minimal learning on the
user’s end, and should not require a large amount of
memorization

• Undetectable: The system should not leak a duress signal to
someone who does not have authorization to read it

• Low false-positive rate: We should ensure that false alarms are
not a common occurrence

• Low false-negative rate: Adversaries should not be able to
bypass the system

• Spyware-resistant: A system compromised by spyware before
any signal is sent should not be able to reveal who sends a
signal

The Keyword System

• Previously proposed by Atallah and Stefanov in 20102 – this provides a
method for sending a duress signal that is easy for users.

• Don’t memorize two passwords.
• Memorize a keyword from a dictionary
• Your assigned keyword is for non-duress logins
• Any other keyword is a duress signal
• Keyword dictionary should have high edit distance to avoid typos (e.g.

birds)
• This system satisfies the easy-to-use and low false positive/negative rates

Partially Homomorphic Encryption

• Homomorphic encryption allows for operations to be
performed on data while it is encrypted

• Fully Homomorphic Encryption: Any operation can be
performed on encrypted data

• Currently very inefficient!
• Partially Homomorphic Encryption: Only some operations

can be performed
• Limited, but efficient
• E.g. Decsk(Encpk (x) * Encpk (y)) = x*y

A New Duress System

Given some partially homomorphic public-key cryptosystem with a homomorphism over a

group G with operation • we are able to store extra information in a password file to
handle duress signals

• We store Encpk(ri), Encpk(𝒌𝒘𝒊
−𝟏) in addition to the usual password data4

• Password storage now looks as shown below, with new additions in the green
columns

Username Salt H(salt + pwd) Encpk(ri) Encpk(𝒌𝒘𝒊
−𝟏)

alice dc433a1f34 8f8ff2239b 442d50f7e4 7f1eb7e075

bob a734ac7cb6 72ff38eb2d 9c670ba400 8074ed62c9

… … … … …

The Login Process

1. The user enters their password
1. Check if H(pwd,salt) matches the stored data. If so continue, else reject

2. The user enters a keyword, kw’
1. If kw’ is not in the dictionary reject (probably a typo!)
2. If it is, overwrite their password file record as follows

1. Encpk(ri) ← Encpk(ri) • (Encpk(𝒌𝒘𝒊
−𝟏) • Encpk(kw’))

• The overwriting process is key. If kw’ == kwi then the encrypted value does not change

• If kw’ does not match kwi, then Encpk(ri) is overwritten with an incorrect value
• Randomization within the cryptosystem prevents attacker from telling if anything

changed

Checking for Duress

• Some Duress Authority holds the private keys to the system
• Ideally external e.g. police, alarm company, but can be in the same

organization as well if desired
• Authority stores the correct ri value for each user
• To check for duress, compare the ri value with the stored value

• A mismatch is a duress signal!
• Optionally – a global flag can be kept for quick polling as well
• At this point the duress response is up to the authority

Acknowledgements

• Thanks to Jeremiah Blocki for several conversations and feedback on this
topic

• Portions of this work were supported by National Science Foundation
Grant CPS-1329979 and by sponsors of the Center for Education and
Research in Information Assurance and Security.
• Portions of this work were supported by a Rolls Royce Doctoral

Fellowship grant
• The statements made herein are solely the responsibility of the authors.
1. Modified from Randall Monroe’s XKCD: Security https://xkcd.com/538/
2. Stefanov, Emil, and Mikhail Atallah. "Duress detection for authentication attacks against multiple administrators." Proceedings of the 2010 ACM workshop on

Insider threats. ACM, 2010.

mfocosi
Typewritten Text
2019 - PDR - 3D1-B40 - Duress Authentication via Partially Homomorphic Encryption - Benjamin Harsha

