
➢Basic Detection Strategy

➢ Each agent can potentially eliminate certain false 

hypotheses based on private observations.

➢ To eliminate other false hypotheses, it communicates 

with neighbors.

➢ Let 𝒮(𝜃⋆, 𝜃) denote the set of agents that can 

distinguish between the true state 𝜃⋆ and 𝜃 ≠ 𝜃⋆.

➢ 𝒮(𝜃⋆, 𝜃) can be viewed as the set of “source agents” 

for the pair 𝜃⋆, 𝜃 .

➢ Disseminate information from 𝒮(𝜃⋆, 𝜃) to other agents 

to help them eliminate the false hypothesis 𝜃.

➢ We consider an f-local Byzantine adversary model.

➢Local-Filtering Based Resilient Hypothesis 

Elimination

➢ Each agent maintains a local belief vector 𝜋𝑖,𝑘, and an 

actual belief vector 𝜇𝑖,𝑘.

➢ Step 1: The local belief-vector of agent 𝑖 is updated in 

a standard Bayesian way:

➢ Step 2: If 𝒩𝑖 < 2𝑓 + 1 , then agent 𝑖 updates its 

actual beliefs as:

➢ Step 3: If 𝒩𝑖 ≥ 2𝑓 + 1 , then agent 𝑖 collects the 

actual beliefs 𝜇𝑗,𝑘(𝜃) of its neighbors, rejects the 

highest 𝑓 and lowest 𝑓 of them, and updates 𝜇𝑖,𝑘(𝜃) as
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Theorem: (i) Strong 2𝑓 + 1 -robustness of 𝒢 w.r.t. every 

source set 𝒮(𝜃𝑝, 𝜃𝑞),𝜃𝑝, 𝜃𝑞 ∈ Θ, and (ii) non-zero priors of 

good agents on each hypothesis         Each good agent 

can rule out every false hypothesis exponentially fast, 

despite the actions of any 𝑓-local adversarial set.

➢Basic Estimation Strategy

➢ Each node can potentially estimate certain portions of 
the state based on local measurements.

➢ For remaining states, it communicates with neighbors.

➢ Identify “source nodes” or “leaders” that can track the 
unstable (or critical) states.

➢ Disseminate information from source nodes to the 
rest of the network. 

➢Worst-Case Byzantine Adversary Model

➢ Each adversary has complete knowledge of the 
system model, and can act arbitrarily.

➢ There are at most 𝑓 adversaries in the neighborhood 
of any good node.

➢Mode Estimation Directed Acyclic Graph

➢Local-Filtering based Resilient Estimation

➢ Let 𝒮 denote the nodes that can estimate 𝑥 𝑘 .

➢ A good node 𝑖 ∉ 𝒮, updates 𝑥(𝑘) as follows:

➢ Step 1: At each time-step 𝑘, node 𝑖 collects the 
estimates of its parents in the MEDAG.

➢ Step 2: It rejects the 𝑓 highest and 𝑓 lowest estimates 
(i.e., rejects extreme estimates), and updates ො𝑥𝑖[𝑘] as
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➢Problem 1: Distributed State Estimation

➢ A dynamical process 𝑥 𝑘 + 1 = 𝐴𝑥(𝑘) evolves over 

a region; 𝑥 𝑘 is the state of the process at time 𝑘.

➢ A network of sensors monitor the state of the 

process. Sensor 𝑖 has measurement 𝑦𝑖 𝑘 = 𝐶𝑖𝑥 𝑘 .

➢ Sensor 𝑖 maintains an estimate of the state ො𝑥𝑖 𝑘 .

➢ Goal: The estimate of each sensor should converge 

to the true state asymptotically.

➢ Applications: Environmental monitoring of diffusive 

processes, power systems, smart factories etc.

➢Problem 2: Distributed Hypothesis Testing/ 

Non-Bayesian Social Learning

➢ A group of agents (sensors or humans) aim to learn 

the true state of the world 𝜃⋆ ∈ {𝜃1, … 𝜃𝑚}.

➢ Agent 𝑖 receives i.i.d. private observations {𝑠𝑖,𝑘}.

➢ Agent 𝑖 maintains a belief vector 𝜇𝑖,𝑘 over the set of 

possible hypotheses, denoted Θ = {𝜃1, … 𝜃𝑚}.

➢ Goal: The belief of each agent should asymptotically 

concentrate on the true state 𝜃⋆.

➢ Engineering Applications: Detection problems (e.g., 

detecting radiation leakage), object classification, 

target recognition etc.

➢ Applications in Social Networks: Deciding which 

product to buy, which candidate to vote for, whether 

a news item is true or fake etc. 

Contribution: For each of the two problems, we 

develop novel distributed algorithms that are light-weight, 

scalable, robust to various types of communication losses, 

resilient against worst-case adversarial attacks on certain 

sensors/agents, and that provably guarantee exponentially 

fast convergence to the true state.
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Fig 2: An Illustration of a MEDAG

▪ MEDAGs provide sufficient 

number of redundant paths for 

transmitting info from source 

nodes to rest of the graph.

▪ Each non-source node has at 

least 2𝑓 + 1 parents in a 

MEDAG.
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Theorem: 3𝑓 + 1 strong-robustness of 𝒢 w.r.t. the source 

set 𝒮 Each good node can track the state exponentially 

fast, despite the actions of any 𝑓-local adversarial set.

3. Resilient Distributed                    

Hypothesis Testing

neighbors of agent 𝑖 with moderate beliefs on 𝜃𝑝 at time 𝑘.

No attacks Agent 2 is adversarial

Fig 4. Plots of beliefs on true state for undirected version of 

network in Figure 2.  

Fig 1: System Illustration 
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Fig 3. Error plots for network in Figure 2. Node 1 is adversarial.
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