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PROBLEM STATEMENT

Intelligent Autonomous Systems (IAS) should be
highly cognitive and reflexive with dynamic environ-

ments.

The learning models should provide incremental
guarantees to IAS for learning and adapting in the pres-
ence of unknown data / context by supporting progres-

sive enhancements when the environment behaves as

expected or graceful degradations when it does not

(Figure 1).
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Figure 2. Reflexivity workflow in IAS

In the case of graceful degradations, there are two alter-
natives:
1. Weaken the acceptance test of data object

(operating at a lower capacity) or

2. Replace primary system with a replica or an

alternate system that can pass the acceptance test.
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Figure 2. Graceful Degradations in IAS

Graceful degradations in IAS through replica replace-

ment (Figure 2) must take place while

- Underlying critical processes continue to progress
without interruption,

- Replication cost is at its minimum.
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Figure 3. Dynamic Adaptation based Recovery Block Scheme
Genericadaptationsofreplicasforgracefuldegradations
are not efficient with unaccounted number of replicas.
Figure 3 shows a generic scheme for graceful degrada-

tions but the replica cost is not controlled.

COMBINATORIAL BLOCK DESIGN

We provide an efficient solution through a combina-
torial mathematical model: balanced block design for

replica replacement in IAS [1].

The combinatorial model is defined as follows: A distrib-

uted environment with
- Set of A systems
- Splitinto M distributed blocks
- Each block has R-subsets of N systems
- Each system appears exactly in C subsets
- Each pair of systems appears in O subsets.

- Eachreplicas get updates every F interval

It is a balanced MACROF-configuration.Weuse N
=7 M=7 R=3 (=3

ting since it represents one of the balanced incomplete

Z = 1 as our base set-

block design of combinatorial mathematics. Figure 4 il-

lustrates the design.
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Figure 4. MACROF System Design with Distributed Autonomous
Blocks (DAB), Communication Channels (CCs), and Systems (S)

Thereplicasare connected and Fis set by Bayesian learn-

ing. Given data item D and context C,

P(C,|D)= P(D)C /P(C)
F o=t

P(Cj+1|Di+1) -~ P(Cj|Di)

RESULTS
Design is implemented through a simulator [2].
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Figure 3. Updates needed for MACROF compared to a sequen-
tial non-MACROF
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