CERIAS

The Center for Education and Research in Information Assurance and Security

Privacy-preserving Autonomous Aggregate Data Analytics in Untrusted Cloud

Ganapathy Mani, Denis Ulybyshev, Bharat Bhargava, Jason Kobes^{*,} Puneet Goyal^{\$}

Computer Science & CERIAS, Purdue University; NGC*; IIT Ropar^{\$}

PROBLEM STATEMENT

Intelligent Autonomous Systems (IAS) should be able to conduct data analytics on-the-fly and update their governing policies based on those analytics.

action (adaptation)

release of data

 \bigcirc

 Wrapped with access control policies and operational control policies.

AUTONOMOUS ACTIVE BUNDLE

Figure 1. Comprehensive conceptualization of Intelligent Autonomous Systems

IAS (Figure 1) should follow these rules to stay efficient:

The aggregated data analytics must be perform

by autonomous entities such as Active Bundle (AB) that does not invade privacy of other entities

Accessingotherentitiesshouldbecosteffectivei.e.
 scalable

ENC(SensitiveData)

Policies, Metadata

Virtual Machine

Figure 2. Active Bundle

AUTHENTICATION PROTOCOL FOR AB ABi AB_{i+2} **AB**_n (Trusted) Certificate Request Access Issue erify Authenticated to erify **Access Data AB**_i **Perform Analytics** • Receive Perturbed Data • Aggregate

Adaptive Policy Block

Data Analytics & Decision Engine

Policy Enforcement Engine

Figure 3. Active Bundle

Policy enforcement engine is influenced by data analytics module. Say, if an AB want to aggregate the average of age, it adds R perturbation to the original data,

Total = $(Age_1 + R) + Age_2 + ... + Age_n$ then the requesting AB can obtain real average Average = (Total-R) / 2.

EVALUATION

450

SOLUTION

We propose two solutions to tackle the problems of privacy and scalability:

- 1. Employsimplistic data perturbation for verified if entities.
- 2. Allow neighboring peers to authenticate access to autonomous entities requesting access.

BACKGROUND

AB (Figure 2) has the following properties:

- Self-enforcement of security policies
- Secure data dissemination with selective

Subtract noise

Figure 3. AB's efficient authentication protocol

Data: AB_i and AB_j as inputs Result: Certificate issued/denied/issued with restrictions if $Type(AB_i)$ is same as $Type(AB_j)$ then if $Trust(AB_i)$ is greater than $Trust(AB_j)$ then Generate authentication certificate; Issue the certificate to AB_j ; else

Generate Certificate with restrictions (only access encrypted data); end

else

Deny the request; Report to administrator; end

```
Algorithm 1. Active Bundle
The algorithm verifies the trust level of AB and
allows it to acquire data from other similar ABs.
```


Number of ABs

Figure 4. AB with and without one time policy enforcement

ACKNOWLEDGMENTS

This research is supported by NGCRC.

REFERENCES

[1] Ranchal, Rohit, et al. "Protection of identity information in cloud computing without trusted third party." Reliable Distributed Systems, 2010 29th IEEE Symposium on. IEEE, 2010.

