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MOTIVATION

FUTURE WORK

IMPLEMENTATION

• Black-box fuzzing and white-box fuzzing 
(i.e. symbolic execution) are both getting 
popular for software testing

• Black-box fuzzing has limitation of 
handling constant values whereas such a 
random testing is fast and efficient

• Symbolic execution suffers from state 
explosion and performance overhead of 
constraint solver although it can generate 
high quality inputs which lead to all 
feasible paths

• All implementation is on Ubuntu-14.04 
LTS

• Main fuzzing logic is built upon Google 
syzkaller

• Concolic logic leverages S2E symbolic 
execution framework

• Agent logic is written in python 2.7

CHALLENGES

• How to handle nondeterministic 
behaviors caused by global state

• How to generate valid sequences of 
system calls in user programs

OBJECTIVE

• Find more BUGS/CRASHES on various 
system software (i.e. OS kernel)

• Maximize kernel code coverage

• Fuzzing logic generates and mutates 
input programs depending on various 
sources and transfer particular inputs 
that need to be further analyzed by 
agent logic

• Concolic logic records path constraints 
and solve them during concrete 
execution of input programs

• Agent logic glues between fuzzing and 
concolic logics by symbolizing input 
programs and verifying constraints

PROPOSED SOLUTION
• We design ALEXKIDD-FUZZER, 

which overcomes limitation of 
fuzzing and symbolic execution.

• We first employ general fuzzing 
mechanism such that feasible 
execution paths are explored at a 
rapid pace. 

• Furthermore, during fuzzing 
execution, we allow concolic 
engine to guide the fuzzer to 
make unreachable-code 
reachable.

PROBLEMS

• Unexplored paths and low code coverage 
due to low quality of inputs

if (a == 0x9e74bae1)

BUG

…… …

ALEXKIDD-FUZZER

EXPECTED CODE COVERAGE

Static analysis

• Measure code coverage and 
performance overhead

• Find real-world bugs/crashes and 
analyze them.
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