
ALEXKIDD-FUZZER: Kernel Fuzzing Guided by Symbolic Information
(Working in Progress)

Kyungtae Kim and Byoungyoung Lee
Department of Computer Science and CERIAS, Purdue University

PROJECT OVERVIEW

Concolic Logic

Concolic Engine

Constraint Generator

Agent Logic

Instrumentation

Verifier

Fuzzing Logic

CovClassifier

Execution Engine

Input Generator

system call
information

❶<Prog>

❹<Proginst, Sys, Br>

❻<Progsym
1, Sys, Br>

❼<Progsym
2, Sys, Br> 

❷<Prog, Path>

❸<Prog, Sys, Br> 

❺<Progsym
1, Sys, Br>

MOTIVATION

FUTURE WORK

IMPLEMENTATION

• Black-box fuzzing and white-box fuzzing 
(i.e. symbolic execution) are both getting 
popular for software testing

• Black-box fuzzing has limitation of 
handling constant values whereas such a 
random testing is fast and efficient

• Symbolic execution suffers from state 
explosion and performance overhead of 
constraint solver although it can generate 
high quality inputs which lead to all 
feasible paths

• All implementation is on Ubuntu-14.04 
LTS

• Main fuzzing logic is built upon Google 
syzkaller

• Concolic logic leverages S2E symbolic 
execution framework

• Agent logic is written in python 2.7

CHALLENGES

• How to handle nondeterministic 
behaviors caused by global state

• How to generate valid sequences of 
system calls in user programs

OBJECTIVE

• Find more BUGS/CRASHES on various 
system software (i.e. OS kernel)

• Maximize kernel code coverage

• Fuzzing logic generates and mutates 
input programs depending on various 
sources and transfer particular inputs 
that need to be further analyzed by 
agent logic

• Concolic logic records path constraints 
and solve them during concrete 
execution of input programs

• Agent logic glues between fuzzing and 
concolic logics by symbolizing input 
programs and verifying constraints

PROPOSED SOLUTION
• We design ALEXKIDD-FUZZER, 

which overcomes limitation of 
fuzzing and symbolic execution.

• We first employ general fuzzing 
mechanism such that feasible 
execution paths are explored at a 
rapid pace. 

• Furthermore, during fuzzing 
execution, we allow concolic 
engine to guide the fuzzer to 
make unreachable-code 
reachable.

PROBLEMS

• Unexplored paths and low code coverage 
due to low quality of inputs

if (a == 0x9e74bae1)

BUG

…… …

ALEXKIDD-FUZZER

EXPECTED CODE COVERAGE

Static analysis

• Measure code coverage and 
performance overhead

• Find real-world bugs/crashes and 
analyze them.

Symbolic
execution

Fuzzing

mfocosi
Typewritten Text

mfocosi
Typewritten Text
2018 - ESS - 829-D1B - ALEXKIDD-FUZZER: Kernel Fuzzing Guided by Symbolic Information - Kyungtae Kim





