
Subgraph Pattern Neural Networks

SPNN is a 3-layer gated neural network with a sparse structure gen-
erated from the training data in a pre-processing step.
Consider a K -class classification task, yt+1(U ) as a one-of-K encod-

ing vector. The probabil i ty nodes V (U ) form an induced subgraph
in Gt+1 with a pattern of class i is

p(yt+1(U ))i = softmax((W(1)ht(U ;W(2),b(2)) + b(1))i ) ,

The pattern layer is a set of neurons. Each neuron corresponds to
one subgraph pattern. The input to the pattern layer is
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Each input feature nodes only connected to their corresponding
neutron according to the graph topology.

Local induced isomorphism densi ty Induced subgraph {A2,V2,T3}
in G1 in Figure 3a in contained in a 4-node subgraph with V (R) =
{A2,V2,T3,A1}. The pattern H has 4-node subgraphs that are within
a radius of d = 1 of the nodes {A2,V2,T3}.
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Figure 3: (a) Il lustration of the training in a citation network with (A)uthors, (T)opics,
(V)enues. Learning the evolution from G1 to G2, we can predict the subgraph patterns in
G3. (b) Subgraph-Pattern Neural Network (SPNN).
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Figure 4: Local induced isomorphism density example
DBLP Dataset
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Figure 5: (DBLP task) Pattern layer F�
1 ,...,F

�
8 , representing connected subgraphs patterns

that appear in the training data. Bars show the di�erence between learned weights of Class
1 and Class 2 for each pattern.

Independentl y Trained (Single Link Predict ions) Joint l y Trained Mul t i -Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP
0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
±0.013

0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009

0.501
±0.002

0.501
±0.004

0.502
±0.002

0.552
±0.019

0.540
±0.017

0.521
±0.017

0.530
± 0.021

0.547
± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against basel ines.

Resul ts

Datasets. DBLP contains scientific papers in four related areas with 14k papers, 14k au-
thors, 8k topics, and 20 venues.
Friendster contains 14 mil l ions of nodes and 75 mil l ion messages includes hometown, col-
lege, interests, and messages sent between users.

Subgraph Pattern Predict ion Tasks.

1. DBLP task is to predict whether an author wil l publ ish in a venue and a topic.

2. Friendster Act ivi ty task predicts whether the total number of messages sent between 4
users wil l increase.

3. Friendster Structure task predicts whether four friends who were weakly connected by
three edges wil l not contact in the future.

Basel ines. (i) AA: Adamic–Adar ; (i i) EdgeInfo: ; (i i i) PC: Path counts ; (iv) PCRW: Path
constrained random walk; (v) Node2Vec: Node embedding. (vi) Rescal : Rescal embedding;
(vi i) HolE: Holographic embedding. (vii i) Patchy: Patchy CNN graph kernel; (ix) GraphNN:
Embedding Mean-Field Inference.
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* Code and data are available at https://github.com/PurdueMINDS/SPNN

Problem Defi ni t ion

Predict ion task Predict Subgraph Evolution. From observed sub-
graphs in G1 toG2, predict their evolution in G3
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Figure 1: Example

Appl i cat ions It can be used to predict topology or label evolution
of subgraphs.

1. Social Network Security: Anomaly detection of group users activ-
ity.

2. Network Security: Predict traffic flow and detect anomaly.

3. DDoSDetection: Distinguish normal and abnormal users.

Figure 2: Applications
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