
 HexCFI: Context Sensitive Dynamic Control-Flow Integrity

Priyam Biswas Nathan Burow Mathias Payer

● Despite hardening with LLVM-CFI, Chrome is still
vulnerable to control-flow hijacks

● Attacks target indirect control flow transfers that are
computed at runtime

● LLVM-CFI statically computes allowed target sets for
indirect control-flow transfers and is over-approximate

void foo() { }
void bar() { }
void fun() { }

int main() {
 void(*fnptr)();
 int a = 2;
 if(a % 2 == 0)
 fnptr = &bar;
 else
 fnptr = &foo;
 fnptr();
 return 0;
}

Target Sets
● LLVM_CFI

 { foo(), bar(), fun() }

● HexCFI
 { bar() }

HexCFI Architecture

Source HexCFI
Instrumentation

Analysis
binary Target Log

Test
Suite

Target Set
Generator

HexCFI
Enforcement
mechanism

Analysis Phase Enforcement Phase● Analysis Phase
○ Instrumentation logs targets for each indirect control-flow transfer
○ Test Suite / fuzzing used to observe all valid execution paths

● Enforcement Phase
○ Computes target set per callsite from Target Log
○ Instruments indirect call sites to enforce valid target set

Goals

● Compute an optimum target set per indirect call site

● An optimum target set is the smallest set such that the
program can still execute correctly

● This will provide the strongest possible CFI security policy

● Promote call sites with one target to direct calls

Motivation Motivating Example

Evaluation

Hardened
binary

mfocosi
Typewritten Text
2018 - PDR - 294-594 - HexCFI: Fully Context Sensitive Control-Flow Integrity - Priyam Biswas

mfocosi
Typewritten Text

