

The Center for Education and Research in Information Assurance and Security

Blockhub: Blockchain-based Secure Cross-domain Software Development System

Denis Ulybyshev¹, Bharat Bhargava¹, Miguel Villarreal-Vasquez¹, Aala Alsalem¹, Ganapathy Mani¹, Leszek Lilien¹, Donald Steiner², Jason Kobes², Steve Seaberg², Paul Conoval², Robert Pike², Rohit Ranchal³

¹Computer Science and CERIAS, Purdue University; ²Northrop Grumman; ³IBM

OBJECTIVES

- Provide secure software sharing and software access auditing
- Provide integrity of provenance data
- Detect software spillage

FEATURES

- Encrypted SM is stored in SB
- Role- and attribute-based access control
- X and Y, can share software via smart contracts running in blockchain network
- Every request and transfer of SM is logged in blockchain's distributed ledger
- For software transfer authorization needed by both smart contract and policy enforcement engine of the SB

ACKNOWLEDGEMENT: This research is supported by Northrop Grumman. We collaborated with Donald Steiner, Leon Li, Jason Kobes, Steve Seaberg, Peter Meloy, Paul Conoval

SOFTWARE SPILLAGE DETECTION

- SB contains Enc [Software (S)] = {Enc_{k1} (SM₁), ..., Enc_{kn} (SM_n) } and Access Control Policies (P) = { p_1 ,..., p_k }
- X is authorized to extract and decrypt SM1 from SB
- X leaks Enc(SM₁) or SM₁ to unauthorized service Y
- When Y tries to decrypt SM1 CM checks policies: whether SM1 is supposed to be at Y
- If plaintext SM1 is leaked: visual watermarks; web crawler checks digital watermarks

 CENTRAL Src ID (X), Dest ID (Y)

 Class of SI

CENTRAL Src ID (X), Dest ID (Y) Class of SM1 Time VICE X SM₁ SB or SM₁ SB or SM₁ SB or SM₁

EVALUATION

PUBLICATIONS, PROTOTYPE

[1] D. Ulybyshev, B. Bhargava, M. Villarreal-Vasquez, D. Steiner, L. Li, J. Kobes, H. Halpin, R. Ranchal, A. Alsalem, "Privacy-preserving Data Dissemination in Untrusted Cloud", IEEE Cloud 2017
[2] NG WAXEDPRUNE Prototype

https://github.com/Denis-

Ulybysh/absoa17

18000 RTT for local SB 16000 14000 ■ RTT for Google Cloud SB 12000 Blockchain Transcation 10000 Latency 12319 12319 **## Chaincode Validation** 8000 4000 2000 2247 2247

