Blockhub: Blockchain-based Secure Cross-domain Software Development System

Denis Ulybyshev¹, Bharat Bhargava¹, Miguel Villarrreal-Vasquez¹, Aala Alsalem¹, Ganapathy Mani¹, Leszek Lilien¹, Donald Steiner², Jason Kobes², Steve Seaberg², Paul Conoval², Robert Pike², Rohit Ranchal³
¹Computer Science and CERIAS, Purdue University; ²Northrop Grumman; ³IBM

OBJECTIVES

- Provide secure software sharing and software access auditing
- Provide integrity of provenance data
- Detect software spillage

FEATURES

- Encrypted SM is stored in SB
- Role- and attribute-based access control
- X and Y, can share software via smart contracts running in blockchain network
- Every request and transfer of SM is logged in blockchain’s distributed ledger
- For software transfer authorization needed by both smart contract and policy enforcement engine of the SB

WAXEDPRUNE ARCHITECTURE

1. Registration of software attributes and ID information
2. Access Authorization
3. Process Automation

SOFTWARE SPILLAGE DETECTION

- SB contains $\text{Enc}[\text{Software}(S)] = \{\text{Enc}_1(SM_1), \ldots, \text{Enc}_n(SM_n)\}$ and Access Control Policies ($P = \{p_1, \ldots, p_n\}$)
- X is authorized to extract and decrypt SM1 from SB
- X leaks Enc(SM1) or SM1 to unauthorized service Y
- When Y tries to decrypt SM1 CM checks policies: whether SM1 is supposed to be at Y
- If plaintext SM1 is leaked: visual watermarks; web crawler checks digital watermarks

PUBLICATIONS, PROTOTYPE

https://github.com/Denis-Ulybyshev/alhsa17

ACKNOWLEDGEMENT: This research is supported by Northrop Grumman. We collaborated with Donald Steiner, Leon Li, Jason Kobes, Steve Seaberg, Peter Meloy, Paul Conoval.