CERIAS

The Center for Education and Research in Information Assurance and Security

Just In Time Hashing

Jeremiah Blocki (jblocki@purdue.edu) and Benjamin Harsha (bharsha@purdue.edu)

ﬁ(ey Problem

log in
* The time users are willing to wait is not

\ attacks

e Users are impatient and do not want to wait to

sufficient to provide protection against offline

~

mml]a

hhhhhh

12345678 UUUUUU [, 5
12345512345nas’é'ﬁ°£| aaaaaaaaaaaaa

stm fnuthall 7

G\e Just In Time Method

their password

when they stop

H(c, H(c,,, ... H(c,,salt)...)

N

e Key idea: It takes users a second or two to type
e Start hashing when they start typing instead of

* Instead of storing the usual H(salt, pwd), store

~

/

Kecurity analysis

Just In Time hashed password in an offline
attack?

e The adversary can use previous password
attempts to speed up future attempts

\other!

* |sthere any advantage to an adversary facing a

 People pick passwords that are similar to each

~

/

[900000 e

e OO @
HOOOPEOOO®

. @ OO®OO@®

~

/

Fig 1: Several common passwords that share paths for JIT hashing

/Just In Time with Memory Hardness
 Adversary gains an advantage if they
can store previous attempts
 Using memory hard functions helps
make storing all previous attempts
infeasible

N

@er Study: How much time do we have for key stretching?

e How long do users actually take to type their passwords?
 |s muscle memory involved? Is it consistent?
e How do they correct their typos? How often do they make

typos?
 Precautions: Third party code review, only collecting timing
\and error correction data /

/Implementation

 Simple implementations exist, just use output of hash
function and continue character by character

 Working it into the function itself helps, especially with
memory hard functions

* Must deal with users making errors and correcting them

 Implementation based on Argon2, winner of Password

\ Hashing Competition in 2015 [1,2] /

Next Steps
* Finish modifications to Argon2
e Complete user study and analyze results

\- Complete write up

/ References & Acknowledgements
1. https://password-hashing.net/argon2-specs.pdf
2. https://password-hashing.net/

This project was funded by Intel through a CERIAS Research Assistantship

N

PURDUE

