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ﬁ(ey Problem

log in
* The time users are willing to wait is not

\ attacks

e Users are impatient and do not want to wait to

sufficient to provide protection against offline
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G\e Just In Time Method

their password

when they stop

H(c, H(c,,, ... H(c,,salt)...)
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e Key idea: It takes users a second or two to type
e Start hashing when they start typing instead of

* Instead of storing the usual H(salt, pwd), store
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Kecurity analysis

Just In Time hashed password in an offline
attack?

e The adversary can use previous password
attempts to speed up future attempts

\other!

* |sthere any advantage to an adversary facing a

 People pick passwords that are similar to each
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Fig 1: Several common passwords that share paths for JIT hashing

/Just In Time with Memory Hardness
 Adversary gains an advantage if they
can store previous attempts
 Using memory hard functions helps
make storing all previous attempts
infeasible
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@er Study: How much time do we have for key stretching?

e How long do users actually take to type their passwords?
 |s muscle memory involved? Is it consistent?
e How do they correct their typos? How often do they make

typos?
 Precautions: Third party code review, only collecting timing
\and error correction data /

/Implementation

 Simple implementations exist, just use output of hash
function and continue character by character

 Working it into the function itself helps, especially with
memory hard functions

* Must deal with users making errors and correcting them

 Implementation based on Argon2, winner of Password

\ Hashing Competition in 2015 [1,2] /

Next Steps
* Finish modifications to Argon2
e Complete user study and analyze results

\- Complete write up
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