DUST-BT: Preventing Supply Chain Tampering using Blockchain Technology

Aniket Kate, Mahimna Kelkar, Easwar Vivek Mangipudi, Pedro Moreno-Sanchez, Krutarth Rao
Purdue University

(1) Supply Chain

Purpose: Supervised transfer of products from suppliers to consumers

![Supply Chain Diagram]

Traditional Supply Chains:
- Track product components using RFID
- Local logs maintained at each supplier

(2) What is the Problem?

Counterfeiting. How to distinguish between products with genuine components and counterfeit ones?

![Counterfeit Products]

Global trade in fake goods worth nearly half a trillion dollars a year!

(3) Building Block: Blockchain

Interesting properties:
- Conflicting transactions can be easily detectable checking the blockchain
- Transactions added to the blockchain cannot be removed

Successfully deployed in several applications today:
- Cryptocurrencies (Bitcoin, Ethereum)
- Credit networks (Ripple, Stellar)

Question: Can we leverage blockchain to avoid counterfeit in supply chain?

Challenges:
1. Blockchain must maintain transactions tailored to supply chain
2. Complex logic for product management

(4) Our Solution: DUST-BT

1. Create smart contract: All supply chain participants agree on a set of rules and logic
2. Deploy smart contract: Rules and logic are installed in a set of validators. Validators initialize the blockchain
3. Append transactions to blockchain: Transactions (e.g., create or transfer product) are added to the blockchain according to the smart contract

(5) DUST-BT: Smart Contracts

Main ideas:
- Convert agreed logic and rules into functions
- Automatic verification of supply chain correctness

<table>
<thead>
<tr>
<th>Transaction Function</th>
<th>Code Snippet</th>
</tr>
</thead>
</table>
|**NewProduct**| if \(p \notin \text{blockchain} \) then
\[
\text{blockchain.insert}(p)
\]
else
\[
\text{return ERROR}
\|
|**TransferProduct**| if \(p \in \text{blockchain} \)
\[
\text{if } p\text{.currentEntity} = \text{ce} \text{ then}
\]
\[
\text{p.currentEntity} = \text{ne}
\]
\[
\text{blockchain.update}(p)
\]
\[
\text{return OK}
\|
|**TransferProductSignal**| if \(p \in \text{blockchain} \)
\[
\text{if } p\text{.currentEntity} = \text{ce} \land \text{externalSignal()} = \text{True} \text{ then}
\]
\[
\text{p.currentEntity} = \text{ne}
\]
\[
\text{blockchain.update}(p)
\]
\[
\text{return OK}
\|

(6) DUST-BT: Implementation

Our implementation is composed of:
- **Hyperledger architecture:** Hyperledger software
- **Smart Contracts:** Our own implementation in Golang
- **Graphical Interface:** Our own implementation in Flask and Javascript

(7) Conclusions

- **Counterfeiting** can be prevented leveraging blockchain technology
- **DUST-BT** offers a flexible yet effective supply chain management

Acknowledgments: This project is supported by Northrop Grumman