CERIAS

The Center for Education and Research in Information Assurance and Security

Software Target-Focused Flow Analysis

Harsha Deshmukh & Daniel Sokoler, Purdue University

Research Question Discussion & Results

Our tool can currently identify flows at the function
level. As seen in the below sample code, we are
expecting two flows :

Given a set of source code written in the C programming
language and a program point with known vulnerability,
how can we derive flows to the vulnerable target from

start point of the program? Main — foo —> foobar— vulnerable point

Main —> bar—> foobar—> vulnerable point

. The Control Flow Graph on the right is the current
Introduction automated output of our tool.

int main(int argc, char* argv[]) {
int x = 5;

if (x > 10) {

Existing parsers parse the C code to generate an AST of

the complete source code, this prevents the user from foo(argv[11);
specifying any determined program point(vulnerability) flse |
of interest to be analyzed for its reachability from the } pertaraviily; @ o

starting point of program. Thus, our tool will utilize the }
AST to backtrack all the paths from the vulnerable point. rotd foolchars b |
This assists in visualizing the reachability of a target point foobar ()

. - . 1
from a code- security viewpoint.
void bar(char*) {
foobar():

}

void foobar() { @
ApproaCh int vuln = 5;

M

Our approach is a bottom-up one. Identify the vulnerable

point by its line number and continually trace upwards to a Conclusion
function definition. When there are no more functions to

trace, the flows have been identified. . .
Thus, we working towards developing a control flow

4 . p
1. Locate the first instance of analyzer to enumerate the flows that reach the
an Abstract Syntax Tree e
L node on that line) VUInerablhty-
4 ‘ N

2.Determine the function that
node is inside of (upwards trace)

_ J
j, a. Find everywhere the method at REferenCES
4 h the head of the queue is called
. | y
3.Add that function to a queue . . Allen, Frances E. (1970, July). Control Flow Analysis. In ACM Sigplan Notices (Vol. 5, No. 7, pp. 1-19).
L y b. Figure out what function that ACM
Y call Is inside of Khedker, U. P.,, & Dhamdhere, D. M. (1994). A generalized theory of bit vector data flow analysis.
() Y ACM Transactions on Programming Languages and Systems (TOPLAS), 16(5), 1472-1511.
4 While the queue isn’t empty c. Add that function to the queue Cheatham, T. E., Holloway, G. H., & Townley, J. A. (1979). Symbolic evaluation and the analysis of
L) programs. IEEE Transactions on Software Engineering, (4), 402-417.

This research is a part of the Information Security Research and Education (INSURE) project. INSURE Is a partnership between
successful and mature Centers of Academic Excellence in Information Assurance Research (CAE-R) and the National Security
Agency (NSA), the Department of Homeland Security and other federal and state agencies and laboratories to design, develop
and test a cybersecurity research network. INSURE Is a self-organizing, cooperative, multi-disciplinary, multi-institutional, and
multi-level collaborative research project that can include both unclassified and classified research problems in cybersecurity.

PURDUE

