CERIAS

The Center for Education and Research in Information Assurance and Security

Evaluating the Memory Footprint of Random Access Memory Acquisition Software

Christine Utz and Marcus Thompson Purdue University

Problem Overview

Volatile Memory Forensics is the branch of Digital Forensics dealing with the acquisition and analysis of volatile memory, i.e., a computer's Random Access Memory (RAM). RAM can contain types of data not found anywhere else on the system such as encryption keys, passwords, and information about the state of the system at the time of the incident under investigation.

Methodology

Every memory acquisition tool is evaluated on both a physical computer and a virtual machine. Snapshots and Windows restore points are used to ensure each tool is tested using the same baseline as depicted below.

Setup

There is a multitude of both command line and GUI-based tools for memory acquisition. As with any other program, executing the volatile memory acquisition tool requires the tool itself to be loaded into the computer's volatile memory – at the risk of possibly overwriting valuable evidence.

Memory Dump

_																	
	C4	8B	D8	0F	8C	9A	00	00	00	4C	8B	64	24	60	44	8B	E-Ma
	AC	24	F0	00	00	00	4C	8D	44	24	40	4D	8B	CC	48	8B	
	D5	48	8B	CF	С7	44	24	28	01	00	00	00	41	FF	С7	С7	Proce
	44	24	20	05	01	00	00	E8	88	FA	FF	FF	44	8B	F0	85	
	C0	75	42	48	8B	44	24	48	4C	8B	4C	24	40	4D	8B	C4	
ſ	48	8B	D6	48	8B	CF	44	89	6C	24	28	48	89	44	24	20	
	E8	AB	00	00	00	8B	D8	3D	05	00	07	80	0F	84	67	65	
	10	00	3D	02	00	07	80	0F	84	5C	65	10	00	85	C 0	0F	Brow
	85	FE	64	10	00	85	DB	0F	88	81	65	10	00	49	8B	CC	Proc
	FF	15	FA	10	35	00	44	8B	6C	24	50	4C	8B	74	24	48	
	45	33	E4	4C	39	67	70	74	0F	48	8B	4F	70	48	8B	01	
	FF	50	20	41	3B	C4	7C	12	45	3B	EC	0F	84	94	09	00	
	00	41	3B	DC	0F	8C	8B	09	00	00	4C	39	67	70	74	15	
	48	8B	4F	70	48	8B	01	FF	50	20	в9	C7	04	07	80	41	
I	3B	C4	0F	4C	D9	8B	С3	48	8B	4C	24	70	48	33	CC	E8	wern
ľ	00	00	00	00	00	00	00	00	00	00	00	41	5F	41	5E	41	Acqu
l	5D	41	5C	5F	5E	5D	5B	C3	90	90	90	90	90	90	90	90	Proce
	FF	F3	55	56	57	41	54	41	55	48	83	EC	68	48	8B	05	
	64	63	40	00	48	33	C4	48	89	44	24	50	4C	8B	A4	24	Passv
	C0	00	00	00	33	DB	49	8B	E9	4D	8B	E8	48	8B	FA	48	Proce
	8B	F1	48	39	59	70	74	0C	48	8B	49	70	48	8B	01	FF	
	50	20	8B	D8	85	DB	0F	88	C6	00	00	00	48	8D	44	24	
	48	4C	8D	0D	D8	32	38	00	45	33	C0	48	8B	D7	33	С9	
	48	89	44	24	20	E8	16	D4	FB	FF	8B	D8	85	C0	0F	88	
ſ	9e	00	00	00	F6	46	3C	01	0F	84	5F	66	10	00	33	C0	
	EB	00	48	8B	4C	24	48	48	83	64	24	30	00	48	8D	54	Word
	24	40	4C	8B	11	48	89	54	24	28	48	83	64	24	20	00	
	4D	8B	CD	45	33	C 0	48	8B	D0	41	FF	52	18	8B	D8	85	Proce
	C0	78	54	48	8B	54	24	40	48	8B	CF	E8	20	C3	FB	FF	
	48	8B	D0	48	8B	F8	48	F7	DA	1B	DB	F7	D3	81	E3	0e	
	00	07	80	7C	27	8B	94	24	C8	00	00	00	4D	8B	CC	4C	

E-Mail Client Process Memory

Browser Process Memory

Memory Acquisition Tool Process Memory Password Manager Process Memory

Evaluation

For each tool, compare live RAM usage and size of process memory dump
Compare usage of resources between the different tools

The following memory acquisition tools are analyzed:

- Volexity Surge Collect Pro 17.03.13
- Access Data Forensic Toolkit (FTK) Imager 3.1.1
- Access Data Forensic Toolkit (FTK) Imager Lite 3.1.1
- Belkasoft Live RAM Capturer
- Mandiant Memoryze 3.0
- MoonSols / Comae Technologies Dumplt 3.0.109.20161007
- osTriage 2.0.0.3
- CyberTriage 2.0.0

Word Processor Process Memory

Running the tool can also leave behind other artifacts: It can load additional libraries into memory, write files to the computer's hard disk, or modify the Windows Registry. Ideally, the amount of such artifacts the forensic tool leaves behind is as small as possible to minimize the probability of potential evidence being changed. Forensic examiners thus need to know how many resources each tool uses to determine which is least likely to render their evidence collection inadmissible in court.

Previous research about the artifacts left behind by memory acquisition tools is limited to older tools that do not support current operating systems (1) or does not reveal how the benchmarks were determined (2), which makes the results difficult to compare with the performance of future tools. This research project analyzes the memory, hard disk, DLL, and Windows Registry usage of selected tools for the Windows 10 platform. Analysis is performed using the Windows Sysinternals Suite (3) and comparing these benchmarks with the size of the memory acquisition tool's process memory extracted from the resulting memory dump.

Challenges

- Benchmarking can only be performed with a finite set of test cases and evaluation methods. How many runs and readings are enough to create reliable results?
- How much resource usage is considered "too much", thus rendering the memory acquisition process forensically unsound and the collected data inadmissible in court?

References

- (1) Sutherland, I., Evans, J., Tryfonas, T., & Blyth, A. (2008). Acquiring Volatile Operating System Data Tools and Techniques. *ACM SIGOPS Operating Systems Review Volume 42 Issue 3, April 2008*, (pp. 65-73).
- (2) McDown, R. J., Varol, C., Carvajal, L., & Chen, L. (2016). In-Depth Analysis of Computer Memory Acquisition Software for Forensic Purposes. *Journal of Forensic Sciences* (61), pp. 110-116.
- (3) Russinovich, M., Margosis, A. (2016). Troubleshooting with the Windows Sysinternals Tools.

