
An Automated and Principled Security Analysis
Framework for Bluetooth LE Implementations

Syed Rafiul Hussain*, Victoria C. Moore✝, Elisa Bertino*
*Purdue University, ✝Intel Corporation

Bluetooth Low Energy For
Proximity-based Communication

Smart devices are connected to
IoT gateways, e.g., Smartphone
Smart devices are connected to
IoT gateways, e.g., Smartphone

Vulnerabilities in Bluetooth
Protocol Implementation

Why Such Vulnerabilities?

(1) Parsing Errors: BLE Implementations do not
correctly parse and process the BLE packets.

(2) Semantic Bugs: Implementations deviate from
Bluetooth standard specifications and hence contains
functional or semantic bugs.

(3) Memory Corruption Bugs: Use-after-free,
buffer overflow, etc.

(4) Weak Cryptographic Primitives: Cryptographic
building blocks used in the protocol are prone to
existing attacks.

Problem Objective

Fuzzing:
 Cannot explore the functional bugs.
 Cannot point out the location of the bug.
 Poor code coverage
Symbolic Execution:
 State explosion problem.

Fuzzing:
 Cannot explore the functional bugs.
 Cannot point out the location of the bug.
 Poor code coverage
Symbolic Execution:
 State explosion problem.

Problem Statement
Develop a highly automated security evaluation
framework to detect first two types of bugs.

Our Proposed Approach

(1) Extract Finite State Machine
 Using a combination of
 static analysis
 symbolic execution

(2) Security Evaluation
Find missing checks
Use model checking to find
property violation
Perform differential testing by
comparing two FSMs

Extract FSM
Slice the
required
portion

Slice the
required
portion

Build
Control

Flow
Graph

Perform
Points-to
Analysis

Construct
Call

Graph

Find
State

Variables

Find
State

Variables

Find
Global

Variables

Find variables that
are updated while
processing packet

Symbolic
Execution
Symbolic
Execution

Extract Path
Constraints

Use Path
Constraints as
Transitioning
Conditions in

FSM

Find Missing Checks
Malicious packets may get accepted by an
implementation if certain checks are missed

Solutions:
1. Compare path constraints for two different

implementations

2. Find the relevant fields of a packet in the
list of path constraints.

Implementation 1 Implementation 2

Find Property Violation Differential Testing
 Select important security property from

standard specification.
“The length of the pin code must not exceed 128 bits”
 Convert this property to a logical formula.

Model
Checker

ϕ

YES

NO
Counter-example

Difference between two FSMs refers to possible
discrepancy

PC7

Implementation 1 Implementation 2

Porsche’s Car Kit
Authentication

Car Kit’s authentication bypass with Android Phone
Goes directly to BLE_PAIR_AUTH_COMPLETE
state if there is a saved PIN code.

bt_status_t btif_dm_pin_reply(…){
…
- if (pin_code == NULL)
- return BT_STATUS_FAIL;
+ if (pin_code == NULL || pin_len >

PIN_CODE_LEN)
+ return BT_STATUS_FAIL;

#if (defined(BLE_INCLUDED) && (BLE_INCLUDED ==
TRUE))

Overflow PIN Code Memory in
BlueDroidIf a malicious

client sets a
pin that was
too long it
would overflow
the pin code
memory.

Conclusion

* This work is supported by Intel Corporation

Property from
specification

Why Existing Techniques Fall short?

Though, developers often optimize the complex part of the
specification for embedded devices, they need to make sure
the implementation complies with specification.

