
The Center for Education and Research in Information Assurance and Security

CERIAS
HexVASAN: A Sanitizer for

Variadic Functions

Motivation

HexVASAN Architecture

 Functions that take variable number of
arguments are not checked statically, e.g.,
int printf(const char*format,…);

 Vulnerabilities arise from differences between
how the caller passes the variadic arguments
and how the callee uses them.

 HexVASAN analyzes variadic functions and
enforces runtime integrity checks.

int add(int n, ...) {

va_list list;

va_start(list, n);

for (int i=0; i < n; i++) {

total = total + va_arg(list, int);

}

va_end(list);

return total;

}

int main(int argc, const char *argv[]) {

int a, b, c, result;

float d;

result = add(4, a, b, c, d);

return 0;

}

Num. of arguments

4

1st argument

(a, int)

2nd argument

(b, int)

3rd argument

(c, int)

Caller Side

(main)

Callee Side

(func add)

Runtime stack

 Real software such as Firefox,

Chromium uses variadic functions both

directly and indirectly, leading to a potential

attack surface.

 HexVASAN successfully tracks if there is

any type mismatch and prevents exploits.

 Incurs 0.45% and 1% overhead for SPEC

CPU2006 and Firefox, respectively.

printf(“%200$p%n”, &var)

 In a format string attack, an attacker controls

the first argument and changes how many

parameters are used and interpreted.

 HexVASAN prevents such attacks.

4th argument

(d, float)

Priyam Biswas Alessandro Di Federico Scott A. Carr Mathias Payer

SPEC CPU2006 overhead (normalized)

(a) Detection of a type mismatch

Attack Model

Result Conclusion

