
The Center for Education and Research in Information Assurance and Security

CERIAS
HexVASAN: A Sanitizer for

Variadic Functions

Motivation

HexVASAN Architecture

 Functions that take variable number of
arguments are not checked statically, e.g.,
int printf(const char*format,…);

 Vulnerabilities arise from differences between
how the caller passes the variadic arguments
and how the callee uses them.

 HexVASAN analyzes variadic functions and
enforces runtime integrity checks.

int add(int n, ...) {

va_list list;

va_start(list, n);

for (int i=0; i < n; i++) {

total = total + va_arg(list, int);

}

va_end(list);

return total;

}

int main(int argc, const char *argv[]) {

int a, b, c, result;

float d;

result = add(4, a, b, c, d);

return 0;

}

Num. of arguments

4

1st argument

(a, int)

2nd argument

(b, int)

3rd argument

(c, int)

Caller Side

(main)

Callee Side

(func add)

Runtime stack

 Real software such as Firefox,

Chromium uses variadic functions both

directly and indirectly, leading to a potential

attack surface.

 HexVASAN successfully tracks if there is

any type mismatch and prevents exploits.

 Incurs 0.45% and 1% overhead for SPEC

CPU2006 and Firefox, respectively.

printf(“%200$p%n”, &var)

 In a format string attack, an attacker controls

the first argument and changes how many

parameters are used and interpreted.

 HexVASAN prevents such attacks.

4th argument

(d, float)

Priyam Biswas Alessandro Di Federico Scott A. Carr Mathias Payer

SPEC CPU2006 overhead (normalized)

(a) Detection of a type mismatch

Attack Model

Result Conclusion

