CERAS

The Center for Education and Research in Information Assurance and Security

Fulgor: Concurrent and Privacy Preserving Transactions with Payment-Channel Networks

Giulio Malavolta^{†*}, Pedro Moreno-Sanchez^{§*}, Aniket Kate[§], Matteo Maffei[‡], Srivatsan Ravi[§]

[†]CISPA, Saarland University [‡]TU Vienna [§]Purdue University

* Both authors contributed equally and are considered to be co-first authors

(1) Bitcoin Blockchain

Bitcoin today:

- Decentralized cryptocurrency
- Payments logged in blockchain
- Widely used in practice
 - \rightarrow > 200,000 daily payments \rightarrow > 12M accounts

	\frown	\frown
Block 51	Block 52	Block 53
Proof of work: 0000009857vvv	Proof of work: 000000zzxvzx5	Proof of work: 00000090b41bx
Previous block: 000000432qrza1	 Previous block: 0000009857vvv 	 Previous block: 000000zzxvzx5
Transacton Ik54lfvx	Transacton dd5g31bm	Transacton 94lxcv14

(2) Addressing Scalability Issues

A Bitcoin payment channel:

- 1. Open a channel in the blockchain
- 2. Several off-chain payments
- 3. Close the channel in the blockchain

Blockchain Transactions

A payment-channel network:

- Network of pairwise channels
- Payment value up to lowest capacity in the path (e.g., min(5,3,4))
- Each channel decreased by pay-

Scalability Issues:

- New block every 10 min on average
- Limited to ~10 payments per second

(3) Problem Definition (I): Privacy

Challenges:

- Find path capacity without revealing individual channels capacity
- Alice • Perform payment revealing payment value only to users in the path

Capacity of the path = min(5, 3, 4)

Capacity = 3

Edward

Bob

Capacity = 4

Fabi

Our privacy goals:

- 1. **Test Privacy:** Only reveal whether there is enough capacity in the path 2. Value Privacy: Reveal payment value only to users in the path
- 3. Anonymity: Sender and receiver remain unknown to other users

(5) Fulgor: Test Operation

(4) Problem Definition (II): Concurrency

Challenge:

• Perform concurrent payments that use common payment channels in their payment paths

Our concurrency goals:

1. **Two users agreement:** Both users agree on their payment channel state 2. Atomicity: All or none of the payment channels in a path are updated 3. **Progress:** At least one of the concurrent payments finishes

(6) Fulgor: Payment Operation

Decentralized payment operation in two phases:

Ideas:

- Communication between neighbors. A user only knows her neighbors
- Test operation reveals whether path capacity is smaller than a value v

$test_{Sdr}(\{u_i\}_{i\in[n]},Rcv,v)$:	$test_{u_j}(\{c_i\}_{i\in[n]},r,v)$:	
$\forall i \in [n-1]:$	$\forall i \in [n]$:	$test_{Rcv}(\{c_i\}_{i\in[n]},r,v):$
$r_i \leftarrow \{0,1\}^{\lambda}$	$\mathbf{if} \perp \neq Dec(dk_{u_j}, c_i)$	$Recv(Sdr,(r_0,\ldots,r_n))$
$c_i \leftarrow Enc(ek_{u_i}, r_i u_{i+1})$	$r_j u_{j+1} = Dec(dk_{u_j}, c_i)$	$r' := \bigoplus r_i$
$r_n \leftarrow \{0, 1\}^{\lambda}$	$\mathbf{if} \ v \leq cap_{(u_j, u_{j+1})}$	$i \in \{0, \dots, n\}$
$c_n \leftarrow Enc(ek_{u_n}, r_n Rcv)$	$r := r \oplus r_j$	if $r' = r$
$r_0 \leftarrow \{0, 1\}^{\lambda}$	else	${f return}\; 1\; {f to}\; {\sf Sdr}$
$\pi \leftarrow \mathcal{P}^n$	$s \leftarrow \{0, 1\}^{\lambda}$	else
$Send(Rcv,(r_0,\ldots,r_n))$	r := s	${f return} \ 0 \ {f to} \ {\sf Sdr}$
$\mathbf{return}\;(c_{\pi(1)},\ldots,c_{\pi(n)},r_0,v)$ to u_1	return $(\{c_i\}_{i\in[n]}, r, v)$ to u_{j+1}	

Concurrent payments are prioritized by their identifiers

- Payments with higher identifier are forwarded first
- If not enough capacity, payment with higher identifier is queued

(7) Implementation

Implementation details:

- Proof-of-concept in Python
- Path up to 20 users
- Results similar to non-private version

Evaluation:

	Computation	Communication		
		test	рау	
Sender	$112 \pm 7.44 \text{ ms}$	10264 B	10244 B	
nt. User	$96 \pm 5.43 \text{ ms}$	10264 B	10244 B	
Receiver	$3 \pm 1.2 \text{ ms}$	8 B	8 B	
	1	1		

(8) Conclusions

- Fulgor is payment-channel network compatible with current Bitcoin
- Provides privacy properties and non-blocking concurrent payments
- Efficient *test* and *payment* operations

Acknowledgments: This project has been supported by the CERIAS/Intel Research Assistantship

