
The Center for Education and Research in Information Assurance and Security

CERIAS
SymCerts: Practical Symbolic Execution For Exposing

Noncompliance in X.509 Certificate Validation Implementations
Sze Yiu Chau Omar Chowdhury§ Endadul Hoque Huangyi Ge Aniket Kate Cristina Nita-Rotaru‡ Ninghui Li

Purdue University The University of Iowa§ Northeastern University‡

• SSL/TLS is now the de facto standard for achiving secure communication

15-Oct 15-Dec 16-Feb 16-Apr 16-Jun 16-Aug 16-Oct 16-Dec 17-Feb
36
38
40
42
44
46
48
50
52
54

Percentage of Web Pages Loaded by Firefox Using HTTPS
(14 day moving average, as reported by Firefox Telemetry)

P
er
ce
nt
ag
e

(1) The need for secure communications

Root CAs

Intermediate CAs

End Entities (e.g. Servers)
RFC 5280

Signs
Signs

(3) How does X.509 work?

SSL
SSL SSL

(5) Small Footprint SSL/TLS libraries for IoT

SymCert

SSL

Symbolic
Execution Engine

Accepting
Universe
(approx.)

Rejecting
Universe
(approx.)

(P∧Q)→Y
¬X→¬Q
S=T-5

X∨Y→¬P
T/2+3=K
A⊕B=1

Sets of Logical
Formulas

A1 (approx.)

(P∧Q)→Y
¬X→¬Q
S=T-5

R2 (approx.)

X∨Y→¬P
T/2+3=K
A⊕B=1

A2 (approx.)

(P∧Q)→Y
¬X→¬Q
S=T-5

R1 (approx.)

X∨Y→¬P
T/2+3=K
A⊕B=1

SMT Solver

SSL

...

Accepting
Universe

Rejecting
Universe

X.509 Certificate Chain Input Universe

(7) Our approach

•We tested 9 implmentations from 4 families of SSL/TLS libraries.
Library - version Released RFC Violations
axTLS - 1.4.3 Jul 2011 7
axTLS - 1.5.3 Apr 2015 6

tropicSSL - (Github) Mar 2013 10
PolarSSL - 1.2.8 Jun 2013 4
mbedTLS - 2.1.4 Jan 2016 1

Library - version Released RFC Violations
CyaSSL - 2.7.0 Jun 2013 7
wolfSSL - 3.6.6 Aug 2015 2
MatrixSSL - 3.4.2 Feb 2013 6
MatrixSSL - 3.7.2 Apr 2015 5

Total: 48
• Findings have been reported and well-received by library developers.
→Many of the problems are fixed in new releases following our reports.

(9) Summary of Experiments and Findings

• X.509 is used in SSL/TLS
→ For Authentication and Key Distribution
• The security guarantees of SSL/TLS hinge on acorrect implementation of the X.509 PKI

Confidentiality
& Integrity

Key Distribution

Authentication

SSL

(2) Why do we care about X.509 certificates?

Overly Permissive Overly Restrictive

• Violating specifications can leadto 2 contrasting pitfalls

(4) Implications of bugs in X.509 implementations

Goal: Find RFC Violations in X.509 implementations made for IoT.
• Related Work
→ SSL/TLS protocol state machine and bug finder
→ Cryptographic proofs and reworked statemachine
→Detect incorrect SSL/TLS API usage in applications

(6) Research Problem

• Focus our analysis on small-footprint, small code-base libraries
•Adding domain specific optimizations
→Does not check cryptographic correctness
→ Concrete Length values in encoded SymCerts
→ Simplify strings (e.g. in name matching)

(8) Making Symbolic Execution practical

•Misintrept UTCTime (MatrixSSL 3.7.2, axTLS 1.4.3 and 1.5.3, tropicSSL)
→ e.g. in MatrixSSL 3.7.2 expiration date can shift by 100 years
•Misinterpret OID of ExtKeyUsage (wolfSSL 3.6.6, MatrixSSL 3.7.2)
→ Overly Permissive (and compatibility issues with custom OID)
• Incorrect Extension Parsing (CyaSSL 2.7.0)→ Crash
• Rejects GeneralizedTime (tropicSSL, axTLS 1.4.3)→ Overly Restrictive
• Incomplete Extension Handling (various libraries)→ Overly Permissive

(10) Notable findings and their implications

Takeaway
• X.509 handling in IoT SSL/TLS libraries all deviate from specification
• If there is a vulnerability in the library, it’s hopeless for Applications
•We provide automated approach and toolchain for finding violations
•Our experiments turn out to be quite prolific→many problems are fixed
•New versions of SSL/TLS libraries are generally better→ Patch often!

Takeaway
• X.509 handling in IoT SSL/TLS libraries all deviate from specification
• If there is a vulnerability in the library, it’s hopeless for Applications
•We provide automated approach and toolchain for finding violations
•Our experiments turn out to be quite prolific→many problems are fixed
•New versions of SSL/TLS libraries are generally better→ Patch often!

* We thank the Purdue Research Foundation and the National Science Foundation for funding this project.


