CERIAS

The Center for Education and Research in Information Assurance and Security

Public-Key Authentication Using Dessins d'Enfants Jacob Bond

Dessins d'Enfants

Using Dessins for Cryptography

Given the Belyĭ map β , it is easy to compute the dessin Δ_{β} , but given the dessin Δ_{β} , it is difficult to compute the Belyĭ map β . It is this "one-wayness" that is exploited in this cryptographic protocol. Suppose Alice knows β, Δ_{β} , while Bob knows γ, Δ_{γ} . Then Alice can give Bob Δ_{β} and Bob can give Alice Δ_{γ} , and they will both be able to compute $\Delta_{\beta \circ \gamma}$. However, neither will know both β and γ , because they cannot compute the Belyĭ map from the dessin.

Figure 1: A dessin d'enfant drawn on a torus

A dessin d'enfant, French for "child's drawing", is a bipartite graph drawn without edge-crossings on a surface, such as a sphere or torus. Labeling the edges results in a cyclic ordering of the edges around each vertex, which can then be viewed as a pair of permutations $\sigma_0, \sigma_1 \in S_n$.

Alice:

private key: Belyĭ map γ on an elliptic curve E
public key: dessin Δ_γ, elliptic curve E
has a table {γ_i}_i of Belyĭ maps on the sphere
Bob:

• chooses a challenge β, Δ_{β} on the sphere

$\sigma_0 = (1\ 2\ 3\ 4)\ (5)\ (6)\ (7)$ $\sigma_1 = (1\ 2)\ (3)\ (4\ 7\ 6\ 5)$

Figure 2: A bipartite graph with edges labeled

Associated to each dessin d'enfant is a (class of) Belyi map(s), a function from the surface on which the dessin is drawn to the sphere, such as

By a result of Wood [1], it is possible to determine the dessin $\Delta_{\beta \circ \gamma}$ of a composition $\beta \circ \gamma$ from the dessins Δ_{β} of β and Δ_{γ} of γ .

Alice randomly chooses $\gamma_1, \dots, \gamma_n$ from her table and computes $\gamma_0 := \gamma_1 \circ \dots \circ \gamma_n, \Delta_{\gamma_0}$, and $\gamma_0 \circ \beta \circ \gamma$.

$$1 \xrightarrow{\gamma_0 \circ \beta \circ \gamma, \ \Delta_{\gamma_0}} \succ B$$

Bob computes $\Delta_{\gamma_0 \circ \beta \circ \gamma}$ both from Δ_{γ_0} , Δ_{β} , Δ_{γ} and numerically from $\gamma_0 \circ \beta \circ \gamma$ and checks for agreement. He also performs a symbolic check to ensure Alice's response is consistent.

[1] Wood, M. Belyi-extending maps and the Galois action on dessins d'enfants. *Publ. Res. Inst. Math. Sci.* 42(3):721-737, 2006.

