CERIAS

The Center for Education and Research in Information Assurance and S

HexType: fast type safety for C++ programs ___
Yuseok Jeon, Hui Peng, Mathias Payer : "hexhive

Type Confusion Attack

%* C++ is used in many areas because of its modularity and class P { Parent A
ccess scope
performance. ntp data: of p* {
** Type-casting converts a pointer from one object type into y
another. ' l -
*** Down-casting (converting a base class pointer to a derived class C: public P { Child Access scope
class pointer) has critical security implications. e data of C*
*** This vulnerability class has recently received increasing y B —
attention and is known as type confusion (unsafe down- ' -
: p data
->
casting). P *Pptr = new P: Cptr c_data\
» Several existing solutions are severely limited by both high C *Cptr = static_cast<C*>(Pptr).
runtime performance and low coverage (e.g., UBSAN only Cotr-se data.(;ype confusiont!) ot b e &
handles type-casting between polymorphic classes, a small i - l;;l‘e;;'::cosu:‘t’i'g;”
subset of all casts). _

HexType Architecture

Update & . . .
: : look up ** We introduce a practical technique that has
Inserting type-casting

the information Ob'ect traCin .
verification instrumentation Creating class j & low runtime performance overhead and

in the table
into all static_cast sites relation metadata Runtime » table broad coverage, covering all type casts in an

Library

Class relation application.

table

LLVM PASS

. ** The source for high runtime overhead of
existing approaches is the combination of

Making expensive class relation checks and tracking

. class - : type information for different memory

relation

data alreadas.
pass

Code

®

* We devise and apply various optimization
methods to reduce overhead for class

Inserting instrumentation relation checking and tracking type
to trace object information.

L/

Type Confusion Detection Conclusion and Future Work

** Previous approaches have limitations to find type

The result of Type confusion checking confusion vulnerability successfully regarding overhead
checking casting from 1032740943 to dst 582177833 and coverage.

P gObj; // declare global variable

int main() {

// stack object testing File Name is : ./AllocatedObjectTest.cpp Line: 27 Column: 22

P sObj: Detected type confusion from 1032740943 to 582177833!!! D Thus, we propose a novel approach with three
C* stackTest = static_cast<C*>(stackObj); //Type Confusion!! (line 27) checking casting from 1032740943 to dst 582177833 information of all casts, (ii) a fast general type check that
1/ global object test leverages an indexed per-object metadata table anc
global object testing 1o Name ic - ratednhiectTe . 2alce : : : :
P* 5100bi = &eObi- T e local information at the current program location, anc
gIouUDn] = &guUDJ; Detected type confusion from 1032740943 to 582177833!!! . . .
C* globalTest = static_cast<C*>(gloObj); //Type Confusion!! (line 38) (iii) low tracking overhead by leveraging architectura
The result of Type confusion checking f
ok - o 1037740943 191776 eatures.
// heap obiject testing checking casting from 1032740943 to dst 582177833
P* heapObj = new P;
C* heapTest = static_cast<C*>(heapObj); //Type Confusion!! (line 43) File Name is : ./AllocatedObjectTest.cpp Line: 43 Column: 21 s We Plan to:
_____ Detected type confusion from 1032740943 to 582177833!!! . . o .
} ** Apply various optimization methods

¢ Handle reinterpret and dynamic cast

PURDUE

