CERIAS

HexType: fast type safety for C++ programs

Yuseok Jeon, Hui Peng, Mathias Payer

Motivation

- **C++** is used in many areas because of its modularity and performance.
- Type-casting converts a pointer from one object type into another.
- Down-casting (converting a base class pointer to a derived class pointer) has critical security implications.
- ❖ This vulnerability class has recently received increasing attention and is known as type confusion (unsafe downcasting).
- Several existing solutions are severely limited by both high runtime performance and low coverage (e.g., UBSAN only handles type-casting between polymorphic classes, a small subset of all casts).

Type Confusion Attack

HexType Architecture

- ❖ We introduce a practical technique that has low runtime performance overhead and broad coverage, covering all type casts in an application.
- The source for high runtime overhead of existing approaches is the combination of expensive class relation checks and tracking type information for different memory areas.
- We devise and apply various optimization methods to reduce overhead for class relation checking and tracking type information.

Type Confusion Detection

Conclusion and Future Work

- Previous approaches have limitations to find type confusion vulnerability successfully regarding overhead and coverage.
- ❖ Thus, we propose a novel approach with three advantages: (i) full coverage, checking the type information of all casts, (ii) a fast general type check that leverages an indexed per-object metadata table and local information at the current program location, and (iii) low tracking overhead by leveraging architectural features.
- ❖ We Plan to:
 - Apply various optimization methods
 - Handle reinterpret and dynamic cast

