
CERIAS
The Center for Education and Research in Information Assurance and Security

Artifacts of WIN_JELLY Malware using GPU Forensics 
Yazeed Albabtain

Department of Computer and Information Technology 
Purdue University 

Project Overview

Graphics Processing Unit (GPU) is an essential part in every computer. The purpose of the GPU is to reduce the load on the Central Processing Unit (CPU)
by creating graphics, colors, and textures if needed. The security of the GPU has been breached by a malware called Jellyfish. The malware was discovered
in May 2015. The malware targets the GPU to avoid detection and monitor the user activity. The first version that has been created of Jellyfish rootkit targets
Linux operating system, specifically AMD and NVIDIA cards (Maheux, 2014). Afterward, anonymous developers developed a new malware called
WIN_JELLY which targets Windows operating system. A forensics tool will be developed in this research using OpenGL as an attempt to detect Jellyfish
malware. The study will develop a detailed analysis of Jellyfish malware using malware forensics tools, such as MEMORYZE, PEview, Strings, Process
Monitor, and Process Explorer. A variety of network analysis tools will be used in this study to determine the malware behavior, such as Wireshark,
ApateDNS, and iNETsim. After having a clear background about the behavior of the Jellyfish malware, a forensic framework will be developed for graphics
processing unit as an attempt to detect such a malware. C/C++, CUDA, OpenGL, OpenCL and few other programming languages, technologies, platforms,
framework and libraries will be used to detect any evidence for WIN_JELLY malware.

Research Methodology

Stage 1:

Malware static analysis will be held at this stage. A variety of static analysis tools
will be used in this stage such as strings, IDA pro, and Ollydbg. Stage one will
help in understanding the malware behavior. IDA Pro typically is the
disassembler. Since it is a disassembler, it investigates binary programs, in
support of code source that is often available to generate. The real interest for
this disassembler is the fact that it indicates the instructions that are essential.
OllyDbg is a debugger which highlights the analysis of binary code. The binary
code for OllyDbg is helpful whenever the source code is never accessible (Park
and Ruighaver, 2008). OllyDbg tool maps out registers, distinguishes procedures,
API calls, tablets, constants, switches and strings. Thus, a thorough report of
WIN_JELLY malware will be obtained in stage one.

Stage 2:

In this stage, a malware dynamic analysis will be performed. Wireshark
application and ApateDNS tool will be used to detect any network activity
performed by the malware. Memoryze application will be used to discover any
malicious code within the memory of the computer system. Memoryze may obtain
or rather analyze images within the memory together with those on live systems
might incorporate the paging files within its analysis.

Stage 3:

It is noted that WIN_JELLY malware resides in the GPU to avoid detection. Thus,
a memory dump technique will be used in this stage to detect if any artifacts
remain in the GPU memory. The tool will be developed using C++ programming
language with a variety of frameworks and libraries.

Conclusion

Dealing with volatile memory is often considered a challenge due to its nature
of handling data. Therefore, not many forensics tools have been developed in
this field. The goal of this research is to discover if WIN_JELLY malware can
be detected using a GPU memory dump technique and to propose a new
detection approach for malware that targets the graphics processing unit.

References

Maheux, B. (2014). Assessing the Intentions and Timing of Malware. 
Technology Innovation Management Review, 4(11).

Park, S., & Ruighaver, T. (2008). Strategic approach to information 
security in organizations. In Information Science and Security, 2008. 
ICISS. International Conference on (pp. 26-31). IEEE.

Stage 1

• Malware static analysis
• IDA pro, Ollydbg, Strings

Stage 2

• Malware dynamic analysis
• Wireshark, ApateDNS, Memoryze

Stage 3

• Memory dump technique
• OpenCL, CUDA, OpenGL

Results
• Analyzing the results


