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Data Classification Using Anatomized Training Data

The Problem

Anatomized Learning Problem
Given some I-diverse data in the anatomy model, can we learn accurate data mining
models?

 What is the anatomy model?

« Whatis |-diverse?

 Under which assumptions?

Anatomy Model

Separate data table (D) into two tables, identifier (IT) and sensitive table (ST) instead
of generalizing records in the same group:
 Divide D in m groups G;, group id (GID) j
IT attributes (4;4): A4,:+, A4
ST attribute: A,
Publish IT and ST instead of D
L-diverse
Xiao et al. (2006), Nergiz et al. (2011, 2013)
Patient Data Example (HIPAA 2002)

lke 41  Dayton 1 1 H(1) 1 Cold
Eric 22 Richmond 1 2 H,,(2) 1 Fever
Olga 30 Lafayette 2 3 H(3) 2 Flu
Kelly 35 Lafayette 2 4 H,,(4) 2 Cough
Faye 24  Richmond 3 5 H,,(5) 3 Flu
Mike 47 Richmond 3 6 H,,(6) 3 Fever
Jason 45  Lafayette 4 7 H,(7) 4 Cough
Max 31 Lafayette 4 8 H,,(8) 4 Flu

|dentifier table (IT)

L-diverse: Privacy Standard

Every instance in IT can be associated with L different instances in ST
« Patient Data Example: L=2
freq(v,G;) _ 1
+ VG,v € my (G)), o )
 Machanavajjhala et al. (2007)

Sensitive table (ST)

Empirical Results

Collaborative Decision Tree Learning

1. Distributed Data Mining in the cloud (Client/server architecture)

2. On-the fly encrypted subtrees (Mancuhan and al. 2014)

3. Experiments with four datasets from the UCI collection: adult, vote, autos and
Australian credit

4. 10 fold cross validation on each dataset measuring accuracy
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1.1

Approaches

Learning Problem Assumptions

« Training set of n;,. instances in anatomy model and test set of n;, instances
without any anonymization (Inan et al. (2009))

No background knowledge for IT

Can’t predict the sensitive attribute A,
privacy!

Prediction task of A;or C (binary!):
« Type1:A4;e{A, -, Az}
« Type 2:C ¢ {A;,--,A;} NC #+ Aq

No IT and ST linking

Data must remain L-diverse

No involvement of D’s publisher

Relaxed Assumptions (some models):
 Minimal involvement of D’s publisher, limited sources of D’s publisher
 Link IT and ST on small subsets

« “Distributed data mining” between third party (server) and data publisher

(client)

. If we could, we would be violating

Collaborative Decision Tree Analysis:
 Type 1 prediction task with relaxed assumptions
 Advantages:
1. Preserves privacy with reasonable accuracy
2. Big part of the decision tree is learnt by the third party, a desired situation in
cloud server/client architecture
* Limitations:
1. Hard to give any bound on the model performance, in particular on the
conditional risk (error rate) of the classification.
2. What about the execution time guarantees in a cloud client/server
architecture?
* Need of a more justified model with the conditional risk guarantees!

Nearest Neighbor Rule in Anatomy Model

Type 2 prediction task without relaxed assumptions.

X

 Anatomized Training Data (D,4): IT IT CID = ST. GIDST

 Augmentation of nearest neighbor rule (Cover and Hart 1967): Expand the
training set such that the expanded version has size n;,.[

 For all fixed [, the conditional risk is the corollary of Cover and Hart when
ntr-%>00

. Dne itical Question: “How does the Baves Rj ~hanae?”

/ Theoretical Results \
Theorem: Let M € R%*! be a metric space, D be the training data and D, be the
anatomized training data. Let P, (X) and P, (X) be the smooth probability density
functions of X. Let P, (X) and P, (X) be the class priors such that P,(X) =
Py Py (X) + Py, Py (X). Similarly, let P;(X) and P,(X) be the smooth probability
density functions of X such that P(X) = P, P;(X) + P,P,(X) with class priors P; and P,.
Let hy(X) = —In (Py, (X) /P4, (X)) and h(X) = —In (P, (X)/P,(X)) be the classifiers with
biases Ah,(X) and Ah(X) respectively. Let t =In(P,;/P,) be the decision threshold
with threshold bias At. Let €4 > 0 be the small changes on P;(X) and P,(X) resulting
in P, (X) and P, (X); and Ry, R* be the Bayesian error estimations with respective
biases AR}, AR*. Let P, (X)and P;(X) be the Parzen density estimations; and K () be
the kernel function for D with shape matrix A and size/volume parameter r. Last, let's

assume that 1) A;; and A, are independent in the training data D and the anatomized

training data D, 2) R, = R* hold 3) At < 1. Therefore, the estimated Bayes risk is:
T_d_l T_d_l

N

R, = a;r% + a,r* + a; + € a,7% + €qasr* — €40,

—-d-1

where €,a, —— > 0 always holds.

« Another critical question: “How does the convergence rate to the asymptotical
conditional risk change?”
«  O(1/([N1]¢*t1) versus O(1/[N]¢t1)
 Faster convergence to the asymptotical conditional risk using anatomized
training data.
 How is the asymptotical conditional risk?
 Depends on the Bayes risk (Theorem above)
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« Experimentation of the nearest neighbor classifier using real data
 SVM classification generalization: How to adjust the right margin for the good
generalization property when the training data is anatomized?
« Real-world case study: How this could inform data retention policies
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