CERIAS

The Center for Education and Research in Information Assurance and Security

Data Classification Using Anatomized Training Data

The Problem

Anatomized Learning Problem

Given some I-diverse data in the anatomy model, can we learn accurate data mining models?

- What is the anatomy model?
- What is I-diverse?
- Under which assumptions?

Anatomy Model

Separate data table (D) into two tables, identifier (IT) and sensitive table (ST) instead of generalizing records in the same group:

- Divide D in m groups G_j , group id (GID) j
- IT attributes (A_{id}) : A_1, \cdots, A_d
- ST attribute: A_s
- Publish *IT* and *ST* instead of *D*
- *L*-diverse
- Xiao et al. (2006), Nergiz et al. (2011, 2013)
- Patient Data Example (HIPAA 2002)

Approaches

Learning Problem Assumptions

- Training set of n_{tr} instances in anatomy model and test set of n_{te} instances without any anonymization (Inan et al. (2009))
- No background knowledge for *IT*
- Can't predict the sensitive attribute A_s. If we could, we would be violating privacy!
- Prediction task of A_i or C (binary!):
 - **Type 1:** $A_i \in \{A_1, \cdots, A_d\}$
 - **Type 2:** $C \notin \{A_1, \cdots, A_d\} \land C \neq A_s$
- No *IT* and *ST* linking
- Data must remain *L*-diverse
- No involvement of *D*'s publisher
- Relaxed Assumptions (some models):
 - Minimal involvement of *D*'s publisher, limited sources of *D*'s publisher
 - Link *IT* and *ST* on small subsets
 - "Distributed data mining" between third party (server) and data publisher (client)

Collaborative Decision Tree Analysis:

	Patient (P)	Age (A)	Address (AD)	GID (G)	SEQ (S)		H(SEQ)	GID (G)	Disease (D)
	Ike	41	Dayton	1	1		H _{k2} (1)	1	Cold
	Eric	22	Richmond	1	2		H _{k2} (2)	1	Fever
	Olga	30	Lafayette	2	3		H _{k2} (3)	2	Flu
	Kelly	35	Lafayette	2	4		H _{k2} (4)	2	Cough
	Faye	24	Richmond	3	5		H _{k2} (5)	3	Flu
	Mike	47	Richmond	3	6		H _{k2} (6)	3	Fever
	Jason	45	Lafayette	4	7		H _{k2} (7)	4	Cough
	Max	31	Lafayette	4	8		H _{k2} (8)	4	Flu
Identifier table (IT) Sensitive table (ST)									

Identifier table (IT)

Sensitive table (ST)

L-diverse: Privacy Standard

Every instance in IT can be associated with L different instances in ST

• Patient Data Example: *L*=2

•
$$\forall G_j, v \in \pi_{A_s}(G_j), \frac{freq(v,G_j)}{|G_j|} \leq$$

• Machanavajjhala et al. (2007)

Empirical Results

Collaborative Decision Tree Learning

- 1. Distributed Data Mining in the cloud (Client/server architecture)
- 2. On-the fly encrypted subtrees (Mancuhan and al. 2014)
- 3. Experiments with four datasets from the UCI collection: adult, vote, autos and Australian credit
- 4. 10 fold cross validation on each dataset measuring accuracy

- Type 1 prediction task with relaxed assumptions
- Advantages:
 - 1. Preserves privacy with reasonable accuracy
 - 2. Big part of the decision tree is learnt by the third party, a desired situation in cloud server/client architecture
- Limitations:
 - 1. Hard to give any bound on the model performance, in particular on the conditional risk (error rate) of the classification.
 - 2. What about the execution time guarantees in a cloud client/server architecture?
- Need of a more justified model with the conditional risk guarantees!

Nearest Neighbor Rule in Anatomy Model

- Type 2 prediction task without relaxed assumptions.
- Anatomized Training Data (D_A): $IT_{IT,GID} = ST,GID^{ST}$
- Augmentation of nearest neighbor rule (Cover and Hart 1967): Expand the training set such that the expanded version has size $n_{tr}l$
 - For all fixed l, the conditional risk is the corollary of Cover and Hart when $n_{tr} \rightarrow \infty$
- One Critical Question: "How does the Bayes Risk change?"

Theoretical Results

<u>Theorem</u>: Let $M \in \mathbb{R}^{d+1}$ be a metric space, D be the training data and D_A be the anatomized training data. Let $P_{A_1}(X)$ and $P_{A_2}(X)$ be the smooth probability density functions of X. Let $P_{A_1}(X)$ and $P_{A_2}(X)$ be the class priors such that $P_A(X) = P_{A_1}P_{A_1}(X) + P_{A_2}P_{A_2}(X)$. Similarly, let $P_1(X)$ and $P_2(X)$ be the smooth probability density functions of X such that $P(X) = P_1P_1(X) + P_2P_2(X)$ with class priors P_1 and P_2 . Let $h_A(X) = -\ln (P_{A_1}(X)/P_{A_2}(X))$ and $h(X) = -\ln (P_1(X)/P_2(X))$ be the classifiers with biases $\Delta h_A(X)$ and $\Delta h(X)$ respectively. Let $t = \ln(P_1/P_2)$ be the decision threshold with threshold bias Δt . Let $\epsilon_A > 0$ be the small changes on $P_1(X)$ and $P_2(X)$ resulting in $P_{A_1}(X)$ and $P_{A_2}(X)$; and R_A^* , R^* be the Bayesian error estimations; and K(*) be the kernel function for D with shape matrix A and size/volume parameter r. Last, let's assume that 1) A_{id} and A_s are independent in the training data D and the anatomized training data $D_A(2)$ $R_A^* = R^*$ hold 3) $\Delta t < 1$. Therefore, the estimated Bayes risk is:

$$\widehat{R_A^*} \cong a_1 r^2 + a_2 r^4 + a_3 \frac{r^{-a-1}}{N} + \epsilon_A a_4 r^2 + \epsilon_A a_5 r^4 - \epsilon_A a_6 \frac{r^{-a-1}}{N}$$

here $\epsilon_A a_6 \frac{r^{-d-1}}{N} > 0$ always holds.

- Another critical question: "How does the convergence rate to the asymptotical conditional risk change?"
 - $O(1/([Nl]^{d+1}) \text{ versus } O(1/[N]^{d+1})$
 - Faster convergence to the asymptotical conditional risk using anatomized training data.
- How is the asymptotical conditional risk?
 - Depends on the Bayes risk (Theorem above)

This work supported by NPRP grant 09-256-1-046 from the Qatar National Research Foundation, 1415 PRF Research Grant from Purdue University

Current Work

- Experimentation of the nearest neighbor classifier using real data
- SVM classification generalization: How to adjust the right margin for the good generalization property when the training data is anatomized?
- Real-world case study: How this could inform data retention policies

Ongoing work supported by Northrup Grumman Cybersecurity Research Consortium

