
CERIAS
The Center for Education and Research in Information Assurance and Security

HexTaint: Ensuring Data Flow Integrity
Using Dynamic Taint Analysis

Priyam Biswas Mathias Payer

Problem Statement

 The integrity and privacy of our data is threatened
by security vulnerabilities in the programs that
access the data

 Memory safety vulnerabilities such as buffer
overflow attacks, use-after free attacks, and format
string attacks accord for the majority of software
vulnerabilities

 Again different logic errors and unanticipated data
flows can also lead to data corruption

 Memory Safety vulnerabilities and Logic Errors
allow an attacker to corrupt the data flow of a
program and compromise the integrity and privacy
of our data

Our Approach

Data Flow Path

int foo
int out

if foo
>10

out =
input()

out = 5

return
out

Taint source

Filter by
Taint Guard

Define
operational
semantics

of the
underlying
taint-flow

policy

Instrument
the source
program on

LLVM
bitcode

level

Generate
Data Flow
Graph for

taint
tracking

Develop
filters to

safeguard
data

integrity

ChallengesDynamic Taint
Analysis
A security tool used
for monitoring the
code during the run
time and observing
the effected code
segments by
previously determined
taint sources

 To generate appropriate filter
 To minimalize false positive
 To reduce overhead

Highlights

 TaintGuard promises strong defense against
data corruption

 More effective than traditional methods as the
analysis is performed during run time

 LLVM Bitcode is an abstract bitstream container
format as well as an encoding of LLVM IR
(intermediate representation) into the container
format

What is LLVM?

LLVM is a compiler
infrastructure, written in
C++, which is designed
for compile-time, link-
time, run-time, and
"idle-time" optimization
of programs written in
arbitrary programming
languages.

References

Conclusion

 TaintGuard addresses data
corruption to ensure data flow
integrity

 Our implementation is in
development phase, but it is
expected to have low overhead

 Vijayakumar, Hayawardh, Xinyang
Ge, Mathias Payer, and Trent
Jaeger. "JIGSAW: Protecting
resource access by inferring
programmer expectations."
In Proceedings of the 23rd
USENIX Security Symposium
(Aug. 2014), pp. 973-988. 2014.

	Slide Number 1

