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Problem Statement

 The integrity and privacy of our data is threatened
by security vulnerabilities in the programs that
access the data

 Memory safety vulnerabilities such as buffer
overflow attacks, use-after free attacks, and format
string attacks accord for the majority of software
vulnerabilities

 Again different logic errors and unanticipated data
flows can also lead to data corruption

 Memory Safety vulnerabilities and Logic Errors
allow an attacker to corrupt the data flow of a
program and compromise the integrity and privacy
of our data

Our Approach
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ChallengesDynamic Taint
Analysis
A security tool used 
for monitoring the 
code during the run 
time and observing 
the effected code 
segments by 
previously determined 
taint sources 

 To generate appropriate filter
 To minimalize false positive
 To reduce overhead

Highlights

 TaintGuard promises strong defense against
data corruption

 More effective than traditional methods as the
analysis is performed during run time

 LLVM Bitcode is an abstract bitstream container
format as well as an encoding of LLVM IR
(intermediate representation) into the container
format

What is LLVM?

LLVM is a compiler
infrastructure, written in
C++, which is designed
for compile-time, link-
time, run-time, and
"idle-time" optimization
of programs written in
arbitrary programming
languages.
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