
CERIAS
The Center for Education and Research in Information Assurance and Security

HexTaint: Ensuring Data Flow Integrity
Using Dynamic Taint Analysis

Priyam Biswas Mathias Payer

Problem Statement

 The integrity and privacy of our data is threatened
by security vulnerabilities in the programs that
access the data

 Memory safety vulnerabilities such as buffer
overflow attacks, use-after free attacks, and format
string attacks accord for the majority of software
vulnerabilities

 Again different logic errors and unanticipated data
flows can also lead to data corruption

 Memory Safety vulnerabilities and Logic Errors
allow an attacker to corrupt the data flow of a
program and compromise the integrity and privacy
of our data

Our Approach

Data Flow Path

int foo
int out

if foo
>10

out =
input()

out = 5

return
out

Taint source

Filter by
Taint Guard

Define
operational
semantics

of the
underlying
taint-flow

policy

Instrument
the source
program on

LLVM
bitcode

level

Generate
Data Flow
Graph for

taint
tracking

Develop
filters to

safeguard
data

integrity

ChallengesDynamic Taint
Analysis
A security tool used
for monitoring the
code during the run
time and observing
the effected code
segments by
previously determined
taint sources

 To generate appropriate filter
 To minimalize false positive
 To reduce overhead

Highlights

 TaintGuard promises strong defense against
data corruption

 More effective than traditional methods as the
analysis is performed during run time

 LLVM Bitcode is an abstract bitstream container
format as well as an encoding of LLVM IR
(intermediate representation) into the container
format

What is LLVM?

LLVM is a compiler
infrastructure, written in
C++, which is designed
for compile-time, link-
time, run-time, and
"idle-time" optimization
of programs written in
arbitrary programming
languages.

References

Conclusion

 TaintGuard addresses data
corruption to ensure data flow
integrity

 Our implementation is in
development phase, but it is
expected to have low overhead

 Vijayakumar, Hayawardh, Xinyang
Ge, Mathias Payer, and Trent
Jaeger. "JIGSAW: Protecting
resource access by inferring
programmer expectations."
In Proceedings of the 23rd
USENIX Security Symposium
(Aug. 2014), pp. 973-988. 2014.

	Slide Number 1

