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Most existing work on fake review detection uses the Few, If any, existing approaches utilize the meaning of Positive Legit Hilton Reviews:

statistical machine learning methods are so prevalent in  words in their analysis of whether an online review Is 12 correct, 3 neutral, 5 incorrect.

contemporary Natural Language Processing (NLP) legitimate. Many possibilities exist that could reveal the  Negative Legit Hilton Reviews:

Reviewer properties legitimacy of a review. 18 correct, 1 neutral, 1 incorrect.
oIf reviewer has only written one review [3], If Positive Deceptive Hilton Reviews:
reviewer has only visited the site once and never  *Fact-checking 14 correct, 2 neutral, 4 incorrect.
visits again [4], or a combination of behavioral and *Can verify the floor they state their room Is in Negative Deceptive Hilton Reviews:
statistical features [5] exists, that the room type exists, if a named hotel 10 correct, 3 neutral, 7 incorrect.
-ldentifying fake reviewer groups based on shared employee exists, etc.
behaviors [6] Patterns of Meaning Positive Legit James Reviews:

*Statistical features *Similar to the existing strategies to find patterns of 10 correct, 2 neutral, 8 incorrect.
«[2] achieved nearly 90% accuracy using just n-gram character strings, regularities in word usage Negative Legit James Reviews:
features *But what feature to look at for patterns? 15 correct, 2 neutral, 2 incorrect.
o[7] found that deceptive reviews have greater Positive Deceptive James Reviews:
lexical complexity, have a higher ratio of first person COerS 17 correct, 2 neutral, 1 incorrect.
pronouns to other words, mention the brand their 111 and [2] developed a corpus of known fake reviews by Negative Deceptive James Reviews:
reviewing more frequently, and differences in the using Amazon Mechanical Turks to write fake reviews on 6 correct, 7 neutral, 7 incorrect.
use of positive and negative words Chicago area hotels. These are compared against real-life
*For a survey of approaches see [8] online reviews of the same hotels. Overall: 102/159 correct (64.2%), 22/159 neutral (13.8%)

35/159 incorrect (22.0%).
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