CERIAS The Center for Education and Research in Information Assurance and Security

CGuard: Adaptive Defense Against DNS Cache Poisoning Attacks By Off-path Adversaries

Omar Chowdhury, Sze Yiu Chau, Victor Gonsalves, Weining Yang, Huangyi Ge, Sonia Fahmy, Ninghui Li Computer Science, Purdue University

(2) Why do we care?

- Cache poisoning is a **real threat**
- Can be used to
 - \rightarrow Track users and serve Ads
 - \rightarrow Conduct MITM attacks
 - \rightarrow Trigger drive-by downloads

(3) Existing Solutions – Short Term

- Entropy increasing mechanisms
 - → Source **port** randomization
 - → IP **address** (destination, source) randomization
 - → **0x20**-bit encoding rAnDOm caPitALiZaTiOn
 - → WSEC DNS prepend random nounce to queries
- Other mechanisms
 - \rightarrow Hold-on wait and use RTT to pick among multiple matching responses
 - \rightarrow Sandwich Antidote sends 3 queries, expects 3 in-order valid responses

- Serious potential damages
- \rightarrow Compromise confidentiality
- \rightarrow Mount fraudulent transactions

(4) Existing Solutions – Long Term

- Using cryptographic means
- → **DNSCurve** breaks caching; key distribution problem
- → **DNSSEC** adoption is low
- Using P2P cooperative network
- → **CoDNS** (OSDI '04)
- → **DoX** (ICC '06)
- → CofiDNS (WORLDS '06)

(5) New attack – Parallel Kaminsky

Parallel attack instances (only one forged response per instance)

(6) Intuition Behind Our Adaptive Approach

(7) Experiment Results

• We evaluate our defense by implementing in Unbound 1.5.4, and then run instances of Parallel Kaminsky attack against it

	Turn #	1	2	3	4	5	6
Original	Instances	2266	1331	3072	1884	2519	1674
	Result	Poisoned	Poisoned	Failed	Poisoned	Poisoned	Poisoned
Modified	Instances	3072	3072	3072	3072	3072	3072
	Result	Failed	Failed	Failed	Failed	Failed	Failed

(8) Take-aways

- DNS cache poisoning is still an **unsolved problem**
- \rightarrow Internet was not designed with inbuilt authentication
- \rightarrow Long term fixes like DNSSEC are not incentive compatible and hence are not deployed wide enough
- An **adaptive defense mechanism** is desirable
- → Compatible with the existing **infrastructure**
- → Compatible with service providers' **incentive**
- → Deterrence comes almost for free in terms of **performance**
- \rightarrow Can benefit from a wide adoption of long term solutions

