CGuard: Adaptive Defense Against DNS Cache Poisoning Attacks By Off-path Adversaries

Omar Chowdhury, Sze Yiu Chau, Victor Gonsalves, Weining Yang, Huangyi Ge, Sonia Fahmy, Ninghui Li

Computer Science, Purdue University

(1) History of DNS Cache Poisoning

- Original attack (published by TFTP)
- First DNS poison
- Birthday attack discovery
- DNSSEC proposed
- IDN
- IDN poisoning proposed
- IDN + entity resolution/requests
- IDN poisoning in 2008
- DNS + poisoning in 2009
- DNS + entity poisoning
- DNS attack led to poisoning of Nalist

(2) Why do we care?

- Cache poisoning is a real threat
- Can be used to
 - Track users and serve Ads
 - Conduct MITM attacks
 - Trigger drive-by downloads
- Serious potential damages
 - Compromise confidentiality
 - Mount fraudulent transactions

(3) Existing Solutions – Short Term

- Entropy increasing mechanisms
 - Source port randomization
 - IP address (destination, source) randomization
- Other mechanisms
 - Hold-on - wait and use RTT to pick among multiple matching responses
 - Sandwich Antidote - sends 3 queries, expects 3 in-order valid responses

(4) Existing Solutions – Long Term

- Using cryptographic means
 - DNSCurve - breaks caching; key distribution problem
 - DNSSEC - adoption is low
- Using P2P cooperative network
 - CoDNS (OSDI ’04)
 - DoX (ICC ’06)
 - CofiDNS (WORLD5 ’06)

(5) New attack – Parallel Kaminsky

- Parallel attack instances
 - Only one forged response per instance
 - Recursive DNS resolver
 - Root/Authoritative Servers

(6) Intuition Behind Our Adaptive Approach

- Various resolving channels exist
 - Query Google Public resolver over TCP
 - Double Query over UDP
 - Query over TCP
 - Query using DNSSEC
 - Renew using Long-Term Stability

(7) Experiment Results

- Original
 - Instances: 2266, 1331, 3072, 1884, 2519, 1674
- Modified
 - Instances: 3072, 3072, 3072, 3072, 3072, 3072

(8) Take-aways

- DNS cache poisoning is still an unsolved problem
- Internet was not designed with inbuilt authentication
- Long term fixes like DNSSEC are not incentive compatible and hence are not deployed wide enough
- An adaptive defense mechanism is desirable
 - Compatible with the existing infrastructure
 - Compatible with service providers' incentive
 - Deterrence comes almost for free in terms of performance
 - Can benefit from a wide adoption of long term solutions