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Frequent ltemset Mining
- Find all itemsets whose support is above threshold

Our Approach

. (Phase 1) Freqguent Itemset discoery

. Frequent itemsets are aggregates over many individuals . (Phase 2) Noisy support derivation
- Releasing the exact result may reveal sensitive personal

information Sparse Vector Techinque
. Atechnique to avoid spending too much privacy budget on
uninteresting queries

Introduce a new randomness by perturbing the threshold

Differential Privacy
For all datasets D, and D, differing at most one element, .

Pr|M;(D4) = R| _
Pr|M;(D,) =R| "~
. output of an algorithm Is insensitive to the change of a single

record
. each database access costs a privacy budget
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Algorithm 1
- T =1+ Lap (2)

€
. X =0(X) + Lap (g)
. If X =7 (Xis frequent) then, output 1
. Otherwise (X is infrequent), output O
Challenge . The output of algorithm is a binary vector v = (v, v, - ;)
Given a set of items I, the size of search space is 0(2!")
How to allocate privacy budget

Smaller privacy budget implies less accurate answers
The accuracy of algorithm Is dependent on the number of

Algorithm 2

e Each node monitors the

. root
ueries .
. T count of a prefix
a b  Node count is initialized
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e | | € the accuracy
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