Top-k Frequent Itemsets via Differentially Private FP-trees

Jaewoo Lee and Chris Clifton
Department of Computer Science, Purdue University

Frequent Itemset Mining
- Find all itemsets whose support is above threshold \(\tau \)
- Frequent itemsets are aggregates over many individuals
- Releasing the exact result may reveal sensitive personal information

Differential Privacy
For all datasets \(D_1 \) and \(D_2 \) differing at most one element, \[\Pr[M_f(D_1) = R] \leq e^\epsilon \]
- output of an algorithm is insensitive to the change of a single record
- each database access costs a privacy budget

Challenge
- Given a set of items \(I \), the size of search space is \(O(2^|I|) \)
- How to allocate privacy budget
- Smaller privacy budget implies less accurate answers
- The accuracy of algorithm is dependent on the number of queries

Our Approach
- (Phase 1) Frequent Itemset discovery
- (Phase 2) Noisy support derivation

Sparse Vector Technique
- A technique to avoid spending too much privacy budget on uninteresting queries
- Introduce a new randomness by perturbing the threshold

Algorithm 1
- \(\tilde{\tau} = \tau + \text{Lap}\left(\frac{\epsilon}{2}\right) \)
- \(\tilde{X} = \sigma(X) + \text{Lap}\left(\frac{\epsilon}{2}\right) \)
- If \(\tilde{X} \geq \tilde{\tau} \) (X is frequent) then, output 1
- Otherwise (X is infrequent), output 0
- The output of algorithm is a binary vector \(v = (v_1, v_2, \ldots, v_l) \)

Algorithm 2
- Each node monitors the count of a prefix
- Node count is initialized with a noise
- To get the correct count, child’s count needs to be added to its parent’s count
- (optional) post-processing can increase the accuracy

Performance Evaluation
- F-score = \(\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} \)
- Relative error = \(\text{median}_X \left(\frac{|\sigma(X) - \tilde{\sigma}(X)|}{\sigma(X)} \right) \)
- the proposed method outperforms other two methods throughout all test datasets

| dataset | \(|D| \) | \(|I| \) | max[|t|] | avg[|t|] |
|-----------------|--------|--------|---------|---------|
| mushroom (MUS) | 8,124 | 119 | 23 | 23 |
| pumsb star (PUMSB) | 40,046 | 2,088 | 63 | 50.5 |
| retail (RET) | 88,162 | 16,470 | 76 | 10.3 |

(a) mushroom (b) pumsb star (c) retail