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Frequent Itemset Mining
• Find all itemsets whose support is above threshold ߬
• Frequent itemsets are aggregates over many individuals
• Releasing the exact result may reveal sensitive personal 

information

Differential Privacy
For all datasets D1 and D2 differing at most one element,
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• output of an algorithm is insensitive to the change of a single 
record

• each database access costs a privacy budget

Challenge
• Given a set of items ॴ, the size of search space is ܱ 2 ॴ

• How to allocate privacy budget 
• Smaller privacy budget implies less accurate answers
• The accuracy of algorithm is dependent on the number of 

queries
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Our Approach
• (Phase 1) Frequent Itemset discoery
• (Phase 2) Noisy support derivation

Sparse Vector Techinque
• A technique to avoid spending too much privacy budget on 

uninteresting queries
• Introduce a new randomness by perturbing the threshold

Algorithm 1
• ߬̂ ൌ ߬ ൅ Lap
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• If ෠ܺ (X is frequent ) then, output 1
• Otherwise (X is infrequent), output 0
• The output of algorithm is a binary vector	ݒ ൌ ሺݒଵ, ⋯,ଶݒ ௧ሻݒ
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• Each node monitors the 
count of a prefix

• Node count is initialized 
with a noise

• To get the correct count, 
child’s count needs to be 
added to its parent’s 
count

• (optional) post-
processing can increase 
the accuracy

Performance Evaluation

• F-score = ଶ ୮୰ୣୡ୧ୱ୧୭୬ൈ௥௘௖௔௟௟
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• Relative error = 	medianଡ଼
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• the proposed method outperforms other two methods 
throughout all test datasets
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