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Problem Statement

 Misuse-based detection systems use signatures of attacks to detect
malicious activity, which require to be continuously updated

 Current approach to create and update sighatures is manual

e Signatures to improve detection systems, are necessary to complement
prevention mechanisms

Specific Goals

 Define process to automatically generate detection signatures
by performing data mining on attack samples
* Create generalized signatures, matching for attacks and its variations

Proposed Solution

 Framework for the automatic creation of generalized signatures
represented as collection of regular expressions, by applying a sequence
of two data mining techniques to a corpus of attack samples

e Solution suggests number of signatures necessary to detect attacks,
while helping reduce size of signatures

 We demostrate our solution specifically with SQL injection (SQLi) attacks,
which have been very dominant in the last couple of years

Experimental Results

0 Collected over 30k SQLi attacks samples
from 2 cybersecurity portals

¥

a Characterized each sample using set a
of 159 features from 3 sources:

SQL reserved words, NIDS/WAF SQLi — bicluster 1 1

signatures, and SQLi reference documents |

a Generated 9 generalized sighatures, one
for each bi-cluster bj, of the form:

Signature(b;) = 1(®TF | < threshold « -
1+e ")

e Each signature is a probabilistic classifier
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pSigene (probabilistic Signature Generation) follows a four-step process:

G WEBCRAWLING: Search cybersecurity portals to collect attack samples

g FEATURE SELECTION: Extract a rich set of features from attack samples
and detection signatures

e CLUSTERING: Apply bi-clustering technique to samples, identifying
distinctive features for each resulting bi-cluster

a SIGNATURE CREATION: Generate generalized signatures, one for each
bi-cluster, using logistic regression modeling

Evaluation

e Performed a 2-way hlgrarchlca.ul agglomerative . Test Set: 1.4M (benign) and 7.2k
clustering (HAC) algorithm, using UPGMA

and Euclidean distance to produce 9 bi-clusters

(malicious) HTTP GET requests
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e Accuracy Comparison between

features
Different SQLi Rulesets
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