

2012 - 4CC-8B5 - Fine-Grained Encryption-Based Access Control for Big Data - Mohamed Nabeel AIP

The Center for Education and Research in Information Assurance and Security

Fine-Grained Encryption-Based Access Control for Big Data

Mohamed Nabeel, Elisa Bertino - Purdue University

Problem Statement

- Big Data technologies (e.g. Hadoop) are increasingly used to store/analyze sensitive data
- Such data needs to be encrypted and access to it controlled

Requirements for an access control

mechanism

- Data at rest should be encrypted
- Should support attribute based access control

- Current schemes provide only coarse-grained access control, are vulnerable to key leakage, and inefficient
- There is a timely need to support fine-grained access control
- Scalable Key Management Policy P s_1 for role = doc s_2 for level = 4 KGS {S₁, S₂ ..., S_n} s₃ for role = rec KGS Pub s_4 for level = 3 Κ (Registration) (Key Generation) Satisfies P Pub $\{S_1, S_2\}$ Does not IV_{2} Pub satisfy P $|V_2|$
- Should be able to support a large dynamic user base
- Should support backward secrecy
- Should be able to handle a large amount of data
- Should not degrade the *performance* of the system

Fine-Grained Encryption on Hadoop

- Each file consists of a set of blocks
 - \rightarrow Blocks are encrypted and replicated across DataNodes
- Hadoop never stores actual symmetric keys
- Clients never send their secrets
 - \rightarrow An adversary cannot derive the secrets from IVs
- Clients can produce correct IVs if and only if their attributes satisfy the policy
- Encryption/Decryption is transparent to Clients/JobTracker

