T-DOMINANCE AND THE DISTRIBUTED ALGORITHM

§ Reachability

From the connectivity logs [2] of a pair of encountered smartphones, we can estimate their reachability, i.e., the average interval between consecutive encounters. Given a set of smartphones \(P \), let \(G(P) \) be the undirected weighted graph with \(P \) as vertices and reachability as the weight on the edges; \(G'(P) \) be the subgraph of \(G(P) \) with weight-greater-than-\(T \) edges removed.

Definition 1 (T-dominance). Let \(P \) be a set of smartphones and \(B \) be the set of bots in \(P \). \(B \) is a botnet which T-dominates \(P \) at time \(t \) if \(\forall B \in G'(P); \exists \forall p \in G'(P) \), either \(p \in B \) or \(p \) is a neighbor of a bot \(b \in B \) in \(G'(P) \).

§ Intelligence Exchange

Two kinds of encounters.

Nodes exchange intelligence at encounters. Two alternative approaches (raw and processed) are proposed.

Prune and Infect

Inspired by the Connected Dominating Set problem [3], we propose the prune-and-infect distributed algorithm for maintaining the T-dominance structural property.

Prune When a bot \(u \) meets another bot \(v \), \(u \) decides whether to disinfect (prune) itself (for stealthiness). We propose two alternative prune algorithms (individual and strong) based on two alternative priority-comparison criteria (strong and count).

Infect When a bot \(u \) meets a clean node \(v \), \(u \) decides whether to infect \(v \). The insight is that \(v \) should be infected unless it is likely to be pruned later. To decide the likelihood of \(v \) being pruned later, we check two criteria (prunable and coverage) consecutively.

§ Algorithm Properties

The prune-and-infect algorithm is localized and delay-tolerant in the following sense: if bot \(b \) prunes itself in its local (and potentially outdated) view at time \(t \), then, in the global (and updated) view, each of the smartphones \(T \)-dominated by \(b \), including \(b \) itself, is still \(T \)-dominated by some bot at \(t \) in the global view.

Due to the speculative nature of the reachability metric, the \(T \)-dominance structural property provides no hard guarantee that a non-bot will be reached by \(T \) after the attack time even if it is \(T \)-dominated by the botnet. However, our experiment shows that \(T \)-dominance provides a fairly good guarantee for reaching a majority in the smartphone pool.

REFERENCES

RESULTS

We use the dataset from the Wireless Topology Discovery (WTD) project [4] in our simulation. Botnet’s lifetime consists of two consecutive phases, herding and attack, with different goals. The goal of the herding phase is stealthiness as characterized by \(T \)-dominance; the goal of the attack phase is epidemic manifested in wide infection within \(T \).

Different prune strategies under \(T = 18,000 \) (5 hrs).

![Graph showing results](http://sysnet.ucsd.edu/wtd/data_download/wtd_data_release.tgz)

CONTRIBUTIONS

1. We propose the concept of botnet-level stealthiness and a novel structural property, \(T \)-dominance, for a stealthy botnet. Instead of infecting all susceptible smartphones, a stealthy botnet malware with the \(T \)-dominance property only infects those smartphones which can reach other smartphones within a time constraint of \(T \) with a high probability.

2. We design a distributed algorithm which maintains the \(T \)-dominance structural property and prove that the algorithm is localized and delay-tolerant in the sense that the algorithm maintains the structural property despite relying solely on local and potentially outdated information.

THOUGHTS ON DEFENSES

Cooperative defense. Proximity malware propagation circumvents centralized defense; individual nodes lack the resource to defend against malware. A cooperative defense mechanism which autonomously coordinates nodes on the task of malware defense is the way out.

Strategic sampling. A socially-aware malware sampling based on the \(T \)-dominance property will choose a socially well-connected group for malware detection. Prioritized patching. The \(T \)-dominance propagation can be applied in distributing malware patches. Instead of stealthiness, the balance between resource consumption and patch distribution efficiency are major concerns.