
Advertisement

Facebook

cnnad_createAd("824136","http://ads.cnn..."
site=cnn&cnn_pagetype=main&cnn_position=...
¶ms.styles=fs","250","300");

Connect your CNN & Facebook accounts

i.cdn.turner.com
connect.facebook.com
icompass.insightexpressai.com
content.dl-rms.com
aranet.vo.llnwd.net
altfarm.mediaplex.com
js.revsci.net
pix04.revsci.net
ads.pointroll.com
content.pulse360.com

mysite.com

secret

happylogins.com

load

evilads.com

load okMsg

Log InXSS

postMessage

eval

evilads.com

Third
Party

Providers

trust Host
Provider

Figure 1: Web applications are made up of components of

multiple origins. End-users typically trust the main provider,

but do not have a relationship with third-party apps and

ad providers. The browser’s same origin policy attempts to

isolate the different components of a web page.

Figure 1 illustrates the situation where a single web page is

built out of a mixture of trusted and untrusted components

kept at bay by the browser’s enforcement of the SOP. Web

pages are served by a host provider. Each party has its goals.

The host provider’s interests are to retain the user’s trust and

to maximize ad revenues. Users want access to the content

while restricting, as much as is allowed, the behavior of

ads and other untrusted elements. For the purposes of this

paper, we focus on threats originating from third party scripts

such as ads, widgets and plugins that are embedded in an

otherwise trusted page.

To illustrate the ease with which attacks can be

constructed, consider Figure 2. The host, mysite.com,

uses a third-party ad-supported login service,

happylogins.com, with ads from evilads.com.

The login service is loaded in an iframe in hopes of

isolating it from the host. mysite.com also stores private

information of the user, in a variable secret. The ad is

able to send the secret to its own server by taking advantage

of subtle flaws:

• The host trusts the login service to provide conformant

and correct JSON.

• The login service trusts the ad not to modify its heap

in damaging ways.

• The ad is able to make cross-domain requests by simply

using a mechanism that is not protected by SOP.

The host code adds an event listener for “message” events,

which are triggered by the postMessage command. Note

that this mechanism is the only means of communication

between frames of different origins, and the messages sent

can only be strings. Therefore, the message returned is

expected to be an object serialized in JSON which con-

tains the login status. JSON is the standard way of object

serialization in JavaScript, and the standard mechanism for

1 <script>

2 var secret = "supersecret";

3 document.addEventListener("message",

4 function(e) {

5 var resp = eval(e.data);
6 // handle the response
7 }, false);
8 </script>

9 Please log in:
10 <iframe src="http://happylogins.com/login">

11 </iframe>

(a) http://mysite.com/

1 <script src="http://evilads.com/ad.js">

2 </script>

3 <script>

4 var okMsg = "({loginOK: true})";

5 function login(u) {

6 if (loginOK(u))

7 window.parent.postMessage(okMsg, "*");

8 }

9 </script>

10 <input type="text" id="name">

11 <button onclick="login(this.value);">

12 Log In</button>

(b) http://happylogins.com/login

1 window.addEventListener("load", function() {

2 okMsg = "new Image().src = " +

3 "’http://evilads.com/evil?p=’" +

4 "+secret;";

5 }, false);

(c) http://evilads.com/ad.js

Figure 2: JavaScript web application. The okMsg variable

is a vulnerability as it allows any component loaded on the

login service’s page to run arbitrary code on the host page.

deserializing JSON is eval
6
, which the host assumes is

safe because the message can be verified to have originated

from the login service’s origin. The login function checks

whether the login information is correct, and sends back

a canned message that will set the property loginOK

to true. With these two pieces of code in isolation, the

communication is secure. The ad code, however, is able to

create an event that fires when the frame fully loads, which

replaces the canned JSON login OK message with a string

of JavaScript code which will, when executed, send the

secret variable in the host to evilads.com. Although

the secret could not be sent via an asynchronous web request

(AJAX), as that mechanism respects the SOP, images are

allowed to come from any source, and so the request can still

be made. JavaScript’s dynamic features create many such

opportunities to subvert the behavior of a program.

6
The native JSON object introduced in ECMAScript 5 is unsupported

on many browsers.

XSS & XSRF attack

P0 P1 P2 P3 P4 P5 P6 P7 P3

E0 E1 E2 E3 E4 E5 E6 E7 E8

happylogins.com evilads.com

X

 • Segregate code according to origin
 • Collect history information for untrusted code
 • Check security policy before irrevocable side-effects
 • Violating behavior causes rollback to safe stateReal-Site Behavior

Policy Functional AdBlock Partial Broken
Empty 50 0 0 0

AddOnly 36 8 5 1

SendAfterRead 42 7 1 0

Fully functional. No visible features hindered.

Ads blocked. The site itself worked, but some ads did not.

Partially Functional. Reduced functionality, but site still usable.

Broken. Fundamental features of site broken.

Introduction Motivation Security with Delimited Histories Evaluation Summary

26/29

Runtime Overhead

Instrumented Uninstrumented
Site Avg. Std. dev. Avg. Std. dev. Overhead

MSNBC 77 0.50 37.2 1.50 106.9%

YouTube 145 2.35 128.2 1.64 13.1%

GMaps 222.0 2.35 199.2 1.48 11.4%

MSNBC runs almost all of its code through eval

17 histories with 424 suspensions, 117,328 reads, 22,924 writes

22 histories with 28 suspensions, 705 reads, 773 writes (YouTube)

48 histories with 3 suspensions, 33 reads, 122 writes (GMaps)

Introduction Motivation Security with Delimited Histories Evaluation Summary

28/29

JSLocker: Flexible Access Control Policies with Delimited Histories and Revocation
Christian Hammer, Gregor Richards, Suresh Jagannathan, Jan Vitek

AddOnly policy rejects updates to previously-existing global fields:
 • For each field-set event:
 • If the object is the global scope:
 • If the field previously existed:
 • Reject

SendAfterRead policy:
 • If a send event (XMLHttpRequest, etc) is attempted:
 • For all previous read events:
 • If the read event was to an object with a different owner:
 • Reject

JavaScript Program

Environment (Internet, OS)

FCE-82A.pdf 1 3/22/2011 9:59:06 AM

mfocosi
Typewritten Text

mfocosi
Typewritten Text
2011 - FCE-82A - JSLocker: Flexible Access Control Policies with Delimited Histories and Revocation - gkrichar@purdue.edu - ASA

mfocosi
Typewritten Text

