
LiveDM: Kernel Malware Analysis with Un-tampered and
Temporal Views of Dynamic Kernel Memory

Junghwan Rhee*, Ryan Riley+, Dongyan Xu*, Xuxian Jiang‡

*Purdue University and CERIAS, +Qatar University, ‡NCSU

Rootkit
Name

of Hidden
Objects

Manipulated Data
Attack Vector

Type Field

hide_lkm
of hidden

drivers
module next /dev/kmem

fuuld
of hidden
processes

task_struct
next_task,
prev_task

/dev/kmem

cleaner
of hidden

drivers
module next LKM

modhide
of hidden

drivers
module next LKM

hp
of hidden
processes

task_struct
next_task,
prev_task

LKM

linuxfu
of hidden
processes

task_struct
next_task,
prev_task

LKM

modhide1 1 module next LKM

kis 0.9 1 module next LKM

adore-ng 2.6 1 module
list.next,
list.prev

LKM

ENYELKM 1 module
list.next,
list.prev

LKM

Detection of Rootkit Attacks Hiding Kernel Objects

State-of-the-art Memory Mapping
• Kernel object maps are built by recursively traversing
pointer connections starting from static objects. (Type-
projection Mapping)
• Maps are subject to pointer manipulation.
• Asynchronous due to its base on memory snapshots

X *next

X *prev

Static memory Dynamic memory

struct X {
struct X *next;
struct X *prev;

}

a1
a1

a2

a3

X *next

X *prev
a2

X *next

X *prev

a3

X *next

X *prev

s1

s1

Kernel memory view is subject to malware manipulation.

Address AddressValue Value

Data type definition of X

Allocation-driven Mapping Approach
• Kernel objects are identified by transparently capturing
kernel memory function calls.
• Memory ranges are extracted from function arguments
and return values.
• Call stack information is used to derive data types.

a = kmalloc (size, flag);

kfree (a);

Kernel
stack

Regist-
ers

Kernel memory

G
u

es
t

O
S

Runtime VMM monitoring

Kernel object map

V
M

M

Allocation

Deallocation

•Allocation call site: code
address of a memory
allocation call

size,a+a, Call site

Key observation: Allocation
call site can be used to infer

the object’s type.

A: a = kmalloc (…);

D: struct X *a;

T: struct X {
int a*;

};

An assignment
statement

A declaration
of a pointer

A type
definition

Type Inference

Debugging
Information

Applications of Allocation-driven Mapping
• Un-tampered view

Systematic detection of kernel data hiding attacks

• Temporal view
Temporal Kernel Rootkit Analysis

Allocation-
driven map

Type-projection
map

Periodic
comparison

Time0.1 0.2 0.40.3

Memory accesses

Kernel control flow

Object Life Time

T1‘s
lifetime

T2’s
lifetime

T3’s
lifetime

T4’s
lifetime

T5’s
lifetime

Before attack After attack

uid = euid = 500
suid = fsuid = 500
gid = egid = 500

fsgid = 500
cap_effective

= cap_inheritable
= cap_permitted

= 0

uid = euid = 0
suid = fsuid = 0
gid = egid = 0

fsgid = 0
cap_effective

= cap_inheritable
= cap_permitted

= 0xffffffff

Privilege escalation attack

Root
credentials

User
credentials

The time range
relevant to the attack

Demo Slides Paper Author

* Objects T1 ~ T5
share

the same
address.

State-of-the-art Memory Mapping Allocation-driven Mapping Approach

Applications of Allocation-driven Mapping Detection of Rootkit Attacks Hiding Kernel Objects

LiveDM: Live
Dynamic Kernel
Memory Map

T3 T3

FC1-B19.pdf 1 3/18/2011 5:03:30 PM

mfocosi
Typewritten Text
2011 - FC1-B19 - Kernel Malware Analysis with Un-tampered and Temporal Views of Dynamic Kernel Memory - Junghwan Rhee - ASA

