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hide_lkm
# of hidden 
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module next /dev/kmem
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# of hidden 
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next_task, 
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/dev/kmem

cleaner
# of hidden 

drivers
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processes

task_struct
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task_struct
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LKM

modhide1 1 module next LKM

kis 0.9 1 module next LKM
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LKM

ENYELKM 1 module
list.next, 
list.prev

LKM

Detection of Rootkit Attacks Hiding Kernel Objects

State-of-the-art Memory Mapping 
• Kernel object maps are built by recursively traversing 
pointer connections starting from static objects. (Type-
projection Mapping)
• Maps are subject to pointer manipulation.
• Asynchronous due to its base on memory snapshots
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struct X {
struct X *next;
struct X *prev;
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Kernel memory view is subject to malware manipulation.
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Data type definition of X

Allocation-driven Mapping Approach
• Kernel objects are identified by transparently capturing 
kernel memory function calls.
• Memory ranges are extracted from function arguments 
and return values.
• Call stack information is used to derive data types.

a = kmalloc (size, flag);

kfree (a);
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•Allocation call site: code 
address of a memory 
allocation call
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Key observation: Allocation 
call site can be used to infer 

the object’s type.

A: a = kmalloc (…);

D: struct X *a;

T: struct X {
int a*;

};
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Applications of Allocation-driven Mapping
• Un-tampered view

Systematic detection of kernel data hiding attacks

• Temporal view
Temporal Kernel Rootkit Analysis
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uid = euid = 500
suid = fsuid = 500
gid = egid = 500

fsgid = 500
cap_effective

= cap_inheritable
= cap_permitted
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uid = euid = 0
suid = fsuid = 0
gid = egid = 0

fsgid = 0
cap_effective

= cap_inheritable
= cap_permitted

= 0xffffffff
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* Objects T1 ~ T5
share 

the same 
address.
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