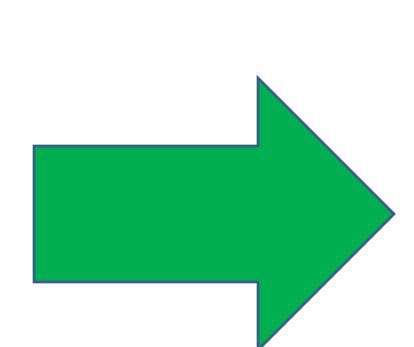
the center for education and research in information assurance and security

Strengthening Distributed Digital Forensics

Jeremiah Nielsen

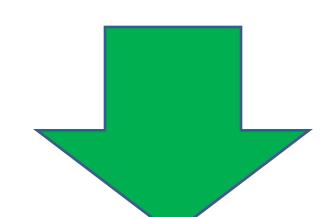
Some Problems

- •File sizes continue to increase
 - •1080p Blu-Ray images 4GB 11GB+ per
- •Its OK, hard drives are massive and cheap! (3TB for \$180)
 - Cheap easy to use NAS devices to (4TB for \$340)
- Current tools were not created with these sizes in mind •Still utilize single work station processing
- Analysis processes are inefficient

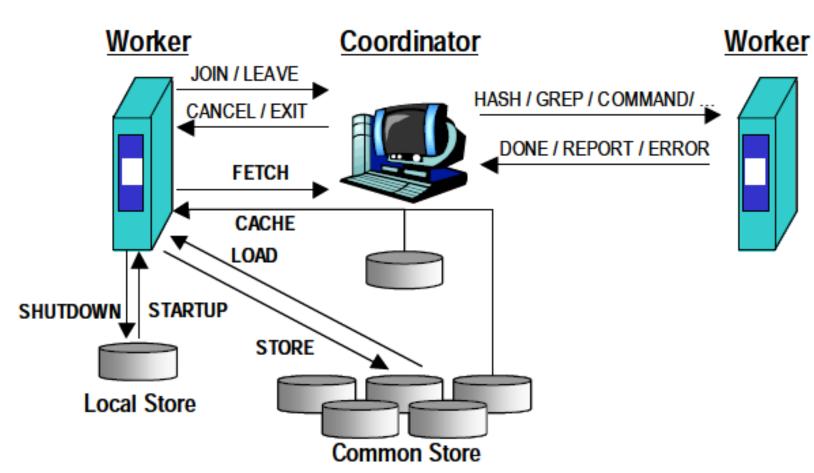

File Server

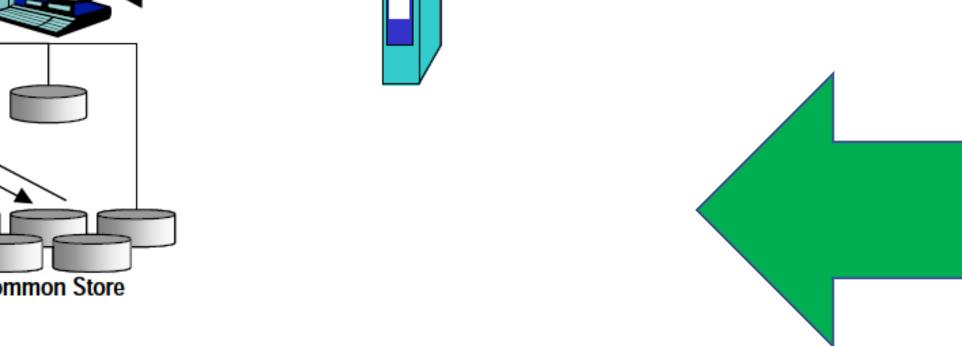
RAM: 2GB

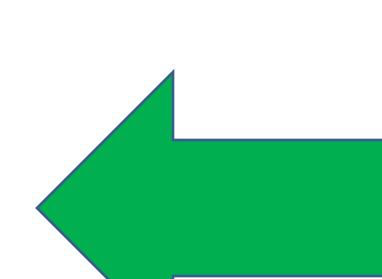
CPU: 2x1.4GHz Xeon


1Gb

Must capture everything and analyze everything

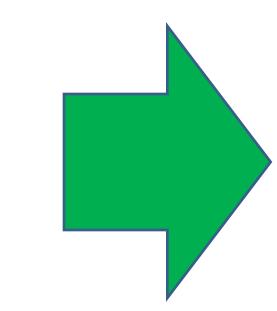

Potential Solutions


- •Wait for SSDs to replace all magnetic disks
 - •Magnetic disk of the future?
- Selective digital forensics using known goods/bads
 - •Fresh Windows 7 x64 install takes 22GB
- Combine static and live analysis methods
 - Can help to pin point items of interest
- Develop more intelligent image capture and analysis
 - Apparently not there yet, still using FTK / Encase



Distributed Digital Forensics Prototype

(Richard III & Roussev, 2004)



The Temporary Band-Aid Solution

- Decrease dataset sizes using intelligent imaging and analysis
 - Nothing yet but still need to do investigations
- •Why not spread the analysis load across several machines?
 - Distributed Digital Forensics!
 - Analogous to a criminal investigation in that resources are added to speed completion (diminishing returns?)
- Could also parallelize apps such as FTK
 - Create split image on SAN device and have workstations index specific pieces of large image

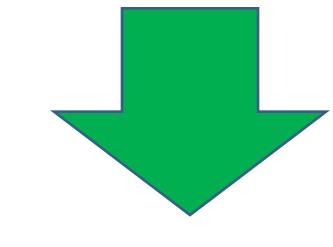
(Richard III & Roussev, 2004)

	Search time: String Expression (mm:ss)	Search time: Regular Expression (mm:ss)
FTK	08:27	41:50
8-node System	00:27	00:28

Initial Operation	Time (hh:mm:ss)
FTK "Open"	1:38:00
CACHE	0:09:36
8-node LOAD	0:03:58
1-node LOAD	0.05.19

Strengthening Distributed Digital Forensics

CPU: 2.4 GHz Pentuim 4


RAM: 1 GB

Research community is dealing with PB datasets (Hadron Collider) (NASA)

96-port, 10/100/1000 Mb

24 Gb Backplane

- •Why is digital forensics finding it difficult to deal with TB datasets?
 - Inefficient imaging and analysis approaches
- •What constitutes an effective digital forensics network?
 - •Scalable, reliable, high speed, secure, and needs little administration
- Apply data intensive computing research to digital forensics
 - •Use a reliable file transfer protocol such as GridFTP
 - Use high speed RAM pools for storage
 - Use peer to peer VPNs for security
 - Use super peers for increased reliability
 - Use data management frameworks for security / reliability
- Use resources from existing underutilized machines
 - •No need to invest in dedicated distributed digital forensics infrastructure

Prototype Issues

- •Only a small image was utilized for testing due to age of the article
 - •6GB image loaded completely in RAM of nodes
- Resource saturation means machines can only be used for DDF
 - Expensive network / resources required if a grid does not exist
- No methods to address node reliability and scalability
 - Needs to be dealt with at the software level but also network level
- A homemade clear text message protocol was used as an MPI
 - •Insecure, as messages can be captured and injected
- •Insecurities justified through the use of a private network
 - Potentially financially infeasible and could conflict with exiting infrastructure

References available upon request

B36-888.pdf